
Open Research Institute
Inner Circle Newsletter
June 2025

The Who What When Where Why
Open Research Institute is a non-profit dedicated to open source digital radio work on the amateur
bands. We do both technical and regulatory work. Our designs are intended for both space and ter-
restrial deployment. We’re all volunteer and we work to use and protect the amtaeur radio bands.
You can get involved in our work by visiting https://openresearch.institute/getting-started

Membership is free. All work is published to the general public at no cost. Our work can be reviewed
and designs downloaded at https://github.com/OpenResearchInstitute

We equally value ethical behavior and over-the-air demonstrations of innovative and relevant open
source solutions. We offer remotely accessible lab benches for microwave band radio hardware
and software development. We host meetups and events at least once a week. Members come from
around the world.

Want more Inner Circle Newsletters?
Use the QR code at left or go to
http://eepurl.com/h_hYzL
and sign up.

Icom IC-905 10 GHz Polarization Issue							 page 2
Open Source Cubesat Workshop 2025 Announced 					 page 4
Take This Job											 page 5
Opulent Voice Protocol Development 							 page 6
Efficiently Using Transmitted Symbol Energy via Delay Doppler Channels pt 2 	 page 8
Wireshark Plugin for Opulent Voice							 page 18
Guide to Transmitting DVB-S2 Video using ORI Encoder				 page 18
Postlocutor, a Prototype Receiver for Opulent Voice					 page 18
Inner Circle Sphere of Activity								 back page

https://openresearch.institute/getting-started
https://github.com/OpenResearchInstitute
http://eepurl.com/h_hYzL

page 2

Icom IC-905 10 GHz Polarization Issue

Good news for amateur radio operators
using the Icom IC-905 10 GHz system!

Following feedback from the San
Bernardino Microwave Society (SBMS),
Gordon West WB6NOA, and other users,
Icom America has agreed to address the
polarization configuration issue that's
been affecting signal performance.

The issue: The IC-905's dish antenna
comes configured for vertical
polarization. Vertical polarization is
standard in Japan. However, most U.S.
amateur microwave operations use
horizontal polarization.

This mismatch has resulted in significant
signal strength differences during
contacts.

The solution is simple: rotate either
the entire dish or just the feed horn
90 degrees to achieve horizontal
polarization. However, many operators
weren't aware of this requirement.

Ray Novak (N9JA) from Icom America
has committed to updating the product
instructions and adding a label to the
packaging that alerts customers about
the dish's default vertical polarization
and how to configure it for horizontal
operation.

Icom has also expressed willingness
to work with SBMS on developing
educational content about this issue,
potentially including information about
SBMS membership.

Amateur radio groups interested in
contributing to this effort should contact
Ray Novak directly at
raynovak@icomamerica.com.

This collaborative approach between
manufacturers and the amateur
radio community demonstrates how
user feedback can lead to improved
documentation and better user
experiences for microwave enthusiasts.

Below is a diagram showing the 90
degree relationship between horizontal
and vertical polarization. Rotating the
dish or feed by 90 degrees restores the
20-30 dB loss that you will get if your
equipment is cross-polarized.

page 2

page 3

The Microwave Link Mystery

Four amateur radio operators (Alice, Bob,
Carol, and Dave) are setting up 10 GHz
microwave links. Each has a different
antenna polarization: Horizontal,
Vertical, Right-Hand Circular (RHC), and
Left-Hand Circular (LHC).

Polarization Loss Rules (line of sight)

•	 Same polarization: 0 dB loss
•	 Cross-polarized linear (H vs V): 20+

dB loss
•	 Circular to linear: 3 dB loss (either

direction)
•	 Opposite circular (RHC vs LHC): 20+

dB loss

1. Alice can communicate with Bob with
perfect signal strength (0 dB loss).

2. Alice gets terrible reception from Carol
(20+ dB loss).

3. Alice receives Dave's signal at reduced
power (3 dB loss).

4. Bob can barely hear Carol (20+ dB
loss).

5. Bob gets a good but reduced signal
from Dave (3 dB loss).

6. Carol receives Dave's signal at reduced
power (3 dB loss).

7. One operator forgot to rotate their
new IC-905 dish from its factory vertical
polarization setting.

Who has which antenna polarization?

ACROSS
1. no longer a planet
3. long for the modulation scheme used in Opulent Voice
5. human-radio interface for Opulent Voice
6. short for the modulation scheme used in Opulent Voice

DOWN
2. name of ORI's badge
4. modem name for Opulent Voice

Solution for May 2025
crossword puzzle

page 3

page 4

Open Source Cubesat Workshop 2025 Announced

https://events.libre.space/event/9/overview

Want to represent ORI? Join our Slack workspace and participate in the process of applying to pres-
ent a talk, workshop, or roundtable. Information from Libre Space Foundation about the workshop
is below:

Reignite the Open Source CubeSat Workshop!

Join Libre Space Foundation again for a two-day workshop to see how the
open source approach can be applied to CubeSat missions with a focus on
innovative and state-of-the-art concepts!

Open source software and hardware is empowering and democratizing all
areas of life, so why not apply it to space exploration? The Open Source
Cubesat Workshop was created exactly for that: to promote the open source
philosophy for CubeSat missions and beyond. The sixth edition of the
workshop takes place in Athens, Greece, hosted by Libre Space Foundation.

CubeSats have proven to be an ideal tool for exploring new ways of doing
space missions; therefore, let’s remove the barrier of confidentiality and
secrecy, and start to freely share knowledge and information about how to
build and operate CubeSats. This workshop provides a forum for CubeSat
developers and CubeSat mission operators to meet and join forces on open
source projects to benefit from transparency, inclusivity, adaptability,
collaboration and community.

The focus of this year’s workshop is to develop and apply open source
technologies for all aspects of a space mission. The target audience of
this workshop is academia, research institutes, companies, and individu-
als.

Starts Oct 25, 2025, 10:00 AM
Ends Oct 26, 2025, 6:00 PM

Europe/Athens
Serafio of the Municipality of Athens

19 Echelidon Street & 144 Piraeus Street 11854, Athens Greece

The workshop is free of charge but limited to 200 people.

page 4

page 5

“Take This Job”
30 June 2025

Interested in Open Source software and hardware? Not sure how to get started? Here’s some
places to begin at Open Research Institute. If you would like to take on one of these tasks, please
write hello@openresearch.institute and let us know which one. We will onboard you onto the team
and get you started.

Opulent Voice:
•	 Add a carrier sync lock detector in VHDL. After the receiver has successfully synchronized to

the carrier, a signal needs to be presented to the application layer that indicates success. Work
output is tested VHDL code.

•	 Bit Error Rate (BER) waterfall curves for Additive White Gaussian Noise (AWGN) channel.
•	 Bit Error Rate (BER) waterfall curves for Doppler shift.
•	 Bit Error Rate (BER) waterfall curves for other channels and impairments.
•	 Review Proportional-Integral Gain design document and provide feedback for improvement.
•	 Generate and write a pull request to include a Numerically Controlled Oscillator (NCO) design

document for the repository located at https://github.com/OpenResearchInstitute/nco.
•	 Generate and write a pull request to include a Pseudo Random Binary Sequence (PRBS) design

document for the repository located at https://github.com/OpenResearchInstitute/prbs.
•	 Generate and write a pull request to include a Minimum Shift Keying (MSK) Demodulator

design document for the repository located at https://github.com/OpenResearchInstitute/msk_
demodulator

•	 Generate and write a pull request to include a Minimum Shift Keying (MSK) Modulator design
document for the repository located at https://github.com/OpenResearchInstitute/msk_
modulator

•	 Evaluate loop stability with unscrambled data sequences of zeros or ones.
•	 Determine and implement Eb/N0/SNR/EVM measurement. Work product is tested VHDL code.
•	 Review implementation of Tx I/Q outputs to support mirror image cancellation at RF.

Haifuraiya:
•	 HTML5 radio interface requirements, specifications, and prototype. This is the primary user

interface for the satellite downlink, which is DVB-S2/X and contains all of the uplink Opulent
Voice channel data. Using HTML5 allows any device with a browser and enough processor to
provide a useful user interface. What should that interface look like? What functions should be
prioritized and provided? A paper and/or slide presentation would be the work product of this
project.

•	 Default digital downlink requirements and specifications. This specifies what is transmitted
on the downlink when no user data is present. Think of this as a modern test pattern, to help
operators set up their stations quickly and efficiently. The data might rotate through all the
modulation and coding, transmitting a short loop of known data. This would allow a receiver
to calibrate their receiver performance against the modulation and coding signal to noise ratio
(SNR) slope. A paper and/or slide presentation would be the work product of this project.

page 5

page 6

Opulent Voice Protocol Development

Opulent Voice is an open source high bitrate
digital voice (and chat, and data!) protocol
developed by ORI. It's designed as the native
digital uplink protocol for ORI's broadband
microwave digital satellite transponder project.
Opulent Voice (OPV) is good for both space and
terrestrial use.

Locutus

The focus of most of the recent work has been
on the minimum shift keying (MSK) modem,
called Locutus. The target hardware for
implementation is the PLUTO SDR from Analog
Devices. See
https://github.com/OpenResearchInstitute/
pluto_msk for source code, documentation, and
installation instructions.

The modem in an excellent "rough draft" state.
There are positive results in over-the-air testing.

Interlocutor: The Human-Radio Interface

Interlocutor is the part of the design that takes
input audio, text, and keyboard chat from the
operator and processes this data into frames for
the modem.

Current Interlocutor code can be found at
https://github.com/OpenResearchInstitute/
interlocutor

Interlocutor also handles received audio, text,
and data. The target hardware for this part of
the design is a Raspberry Pi version 4, with
expectations that it will run on other Python-
capable and/or Linux-based devices.

What's Happened Since O	ur May 2025
Updates?

What were the "Next Steps" from last month?
We intended to take the functional Opulent
Voice framing, which successfully delivered
Opus packets, and insert COBS, RTP, UDP, and
IP layers in order to gain a substantial increase

in functionality.
All of that has happened. The stream of Opulent
Voice frames are much more functional and can
be handled by a very large number of existing
applications. The additional overhead was well
worth the investment of complexity and latency.

What Else is New?

We implemented configuration files. This is a
YAML file that stores settings for the radio.

A configuration manager codebase was added to
handle config file tasks.

We implemented audio hardware configuration
files. This is a YAML file that stores settings
for the audio hardware choices made by the
operator.

We implemented an audio hardware
manager. The audio hardware manager
helps the operator test, list, and save audio
hardware configurations. A microphone gain
measurement and speaker test are included.

We wrote an automated test suite. It has four
phases, with multiple tests per phase. As
development proceeds, we can easily test if
any code changes damage previously achieved
functionality. If it's in the test suite, then it
needs to still be working regardless of anything
we add to the codebase. This helps ensure a
quality product moving forward.

Automated Test Suite Overview

Phase 1: Basic Operations
 run_test "help_display"
 run_test "version_info"
 run_test "no_callsign"
 run_test "invalid_callsign"

Phase 2: Command Line Options
 run_test "audio_help_options"
 run_test "list_audio_exits_clean"
 run_test "test_audio_exits_clean"
 run_test "setup_audio_handles_eof"

page 6

https://github.com/OpenResearchInstitute/pluto_msk
https://github.com/OpenResearchInstitute/pluto_msk
https://github.com/Abraxas3d/interlocutor
https://github.com/Abraxas3d/interlocutor

page 7

Phase 3: Network Configuration
 run_test "custom_ip"
 run_test "custom_port"
 run_test "invalid_ip_accepted"
 run_test "invalid_port"

Phase 4: Operating Modes
 run_test "chat_only_mode"
 run_test "verbose_mode"
 run_test "quiet_mode"

Phase 5: Configuration File Handling
 run_test "no_config_files"
 run_test "partial_config"
 run_test "corrupted_config"
 run_test "good_config_loaded"
 run_test "cli_overrides_config"

Next Steps?

If the Opus encoder does a good enough job
of detecting when the speaker is silent, we can
take advantage of those silence frames to send
(fragments of) waiting control, text, or data
packets. This would be useful mainly if we are
also multiplexing multiple streams with an
advanced variant of COBS.

We have an ongoing discussion on how to deal
with the potential problem of getting out-of-
order frames, which may happen when we use
Interlocutor with a remote computer network,
or with a modem that is (significantly) remote.

An out-of-order Opulent Voice frame problem
isn't expected to occur over the radio link.
Packets either get through or they don't, but
never out of order, because they are always
transmitted in order and there's no mechanism
to retry transmitting them later. This assumes
that the modem is located close to Interlocutor.

So the problem can only occur if we try to use
this radio link protocol as a network (transport)
protocol, which can introduce complications
like out of order delivery. This happens when
we're communicating to another computer with
Interlocutor software, over the Internet. Which,
we expect people might want to do.

The obvious solution here is to use TCP, which is
designed as a transport protocol. TCP can turn
a channel that delivers packets unreliably and
possibly out of order into a channel that never
does either of those things. Bytes always arrive
perfectly correct and perfectly in order, or else
the link fails.

So where we are using just UDP to encapsulate
our OPV frames on a short wire between the
host and the modem, we would probably want
to use TCP on a network link if we for some
reason wanted to remote the modem over a
network.

Since we already have a configuration item for
"computer" or "modem", then we have a way
to distinguish between the two modes. The
difference between the two modes right now in
the code is that selecting "computer" means a
KEEPALIVE signal is sent as a control channel
message. The KEEPALIVE is not sent when
Interlocutor is configured as being connected
to a "modem". We could use TCP in computer
and UDP in modem. Discussions on this will
continue!

Voice detection or VOX? Live voice-to-text
transcripts? Smart QSO logging?

Want to Help?

If you would like to help make these and the
many other things that we do happen more
quickly or better, then you are welcome at ORI!

Read over our code of conduct and developer
and participant policies on our website
at https://www.openresearch.institute/
developer-and-participant-policies/, and then
visit our getting started page at https://www.
openresearch.institute/getting-started/

page 7

https://www.openresearch.institute/developer-and-participant-policies/
https://www.openresearch.institute/developer-and-participant-policies/
https://www.openresearch.institute/getting-started/
https://www.openresearch.institute/getting-started/

page 8

Efficiently Using Transmitted Symbol Energy via Delay-Doppler Channels — Part II
Pete Wyckoff, KA3WCA

Introduction

Part II builds examples with Delay-Doppler channels from the Part I foundation of multi-path
with delay but without Doppler. Part I defined an efficiency metric as the ratio of energy-per-
symbol that actually reaches the demodulator versus the energy-per-symbol transmitted [1].
The efficiency metric showed that certain DSP waveform designs transfer energy from the
transmitter to the demodulator more efficiently than others when there is multi-path
propagation and a known channel response [2]. This effect exploits superposition of fields
from two or more propagation paths. Figure 1 illustrates the effect at a receiver’s low
intermediate frequency (IF) to simplify visualization.

FIGURE 1: (LEFT) A single pulse unit energy transmit waveform propagates to the receiver via two paths and
delivers energy -119.0 dB to the receiver. (RIGHT) A two pulse unit energy transmit waveform propagates via the
same two paths and delivers energy -117.6 dB to the receiver — boosting energy transfer from transmitter to
receiver by +1.4 dB for this channel.

The Figure 1 top row shows two alternatives for the transmitted waveform design — single
pulse vs. two pulse waveform. Crucially, both waveforms have equal transmitted energy-per-
symbol. The second row in Figure 1 shows each waveform after propagating via the first path.
The third row of Figure 1 shows each waveform after propagating via the second path featuring
somewhat greater path delay and further decreased amplitude.

The energy received from each individual path is not affected by using one pulse or two pulses
for the transmitted waveform in Figure 1. Rather, superposition of these two paths at the
receiver antenna produces the important effect — see bottom row of Figure 1. Fields from the
two paths combine constructively for the two pulse signal between times 50.2 and 50.3 us.
This boosts the overall received energy for the two pulse waveform. In Figure 1, the two pulse
waveform transferred energy from the transmitter to the receiver +1.4 dB more efficiently than

page 8

page 9

the single pulse waveform for this channel. Of course, this assumes we have an accurate
estimate of the channel and the boost in efficiency would degrade with errors in that estimate.

Some amateur radio channels exhibit not only multi-path with delay, but multi-path with Delay-
Doppler. Figure 2 repeats the same experiment with different Doppler on each path. This
shows the two pulse waveform design no longer delivers any boost in energy transferred. Both
signal designs deliver -119 dB of energy. The reason is that superposition of the two paths no
longer fully and constructively interferes for the two pulse waveform between 50.2 and 50.3 us.

FIGURE 2: Different Doppler on the second path destroys the energy efficiency boost for the two-pulse waveform.
Doppler is exaggerated in this diagram to help visualization. Realistic Doppler is addressed later in this paper along
with more sophisticated waveform designs.

Improved waveforms to accommodate delay-Doppler channels are the focus of this Part II
paper. A simple example resolves the limitation revealed in Figure 2. Then, this foundation is
extended to more representative amateur radio channels where Doppler shifts between the
different paths might vary by only several Hz over less than a milli-second. Conventional
Orthogonal Time-Frequency Space (OTFS) provides inspiration [3]. A new extension of OTFS
provides one design methodology to boost the efficiency of energy transfer from transmitter to
receiver for such amateur delay-Doppler channels. Finally, performance is characterized with
channel estimation errors of varying severity.

Simple Example to Resolve the Doppler Limitation

Different Doppler on the second path will produce fully constructive interference if the two
pulses are sent at different center frequencies — see Figure 3. This enhanced design restores
the two-pulse waveform energy at the receiver to -117.6 dB. The enhanced two pulse
waveform is then 1.4 dB more efficient than the single pulse waveform. Incorporating the
channel delay and Doppler into the waveform design may increase the energy transferred from
the transmitter to the receiver via the delay-Doppler multi-path channel as demonstrated in
Figure 3. As in Part I, a waveform with more than two pulses could also be designed to boost
efficiency further [4]. Figure 3 merely shows the basic concept for the simplest channel.

page 9

page 10

FIGURE 3: The enhanced two-pulse waveform design takes advantage of this known delay-Doppler channel.
Transmitting two pulses at different times and frequencies restores the +1.4 dB boost in energy transfer efficiency
from the transmitter to the receiver. Doppler is exaggerated in this diagram to help visualization. Realistic Doppler
is addressed later in this paper along with more sophisticated waveform designs.

Time-Frequency Perspective on the Two Pulse Waveform & Delay-Doppler Channel

Figure 4 shows a two pulse signal in the time-domain and in the time-frequency domain. The
top row shows the transmitted signal from both viewpoints. There are two pulses at the same
frequency and separated by 0.2 micro-seconds in time.

The second row in Figure 4 shows the signal that arrives from the first path. It is the
transmitted signal shifted in time and reduced in amplitude by 120 dB.

The second path signal appears in the third row of Figure 4. This path is delayed further and
reduced in amplitude further. As well, this second path has a Doppler shift with respect to the
first path. The time-frequency plot shows this clearly as it resolves the frequency versus time.

The bottom row of Figure 4 shows the superposition of the first and second path in the time
domain (lower left) and in the time-frequency domain (lower right). Superposition between 50.2
and 50.3 micro-seconds does not fully constructively interfere because the two paths arrive on
two distinct frequencies in Figure 4.

Figure 5 shows the enhanced two pulse signal in time and in time-frequency. The top row of
Figure 5 emphasizes the enhanced two pulse signal sends pulses on two different frequencies.
The middle two rows show these pulses after traversing the first and second paths. Finally, the
bottom row shows this enhanced signal delivers time and frequency alignment of pulses
received over the paths from 50.2 to 50.3 micro-seconds.

page 10

page 11

FIGURE 4: Time-frequency perspective shows this transmit waveform design misaligns the pulses in frequency
between 50.2 and 50.3 microseconds. There is no boost in energy transfer efficiency since the super-position is not
aligned in time and frequency.

page 11

page 12

FIGURE 5: Time-frequency perspective shows this transmit waveform design causes a boost in energy delivered to
the receiver. The two paths align perfectly between 50.2 and 50.3 micro-seconds, which boosts the received
energy.

Extending OTFS Waveforms for More Practical Delay-Doppler Values

This section extends a modulation called orthogonal time frequency space (OTFS) to boost
energy efficiency through the multi-path channel. Practically speaking, this is needed because
earlier figures exaggerated the Doppler shift between paths and assumed a short symbol
period simply to clarify the visualization. That also made the waveform design easier.

page 12

page 13

More practical constraints require a different approach. Instead of working in time-frequency
space, the delay-Doppler space provides a better way. It is only slightly more complicated to
boost channel energy transfer efficiency in this manner. The function “makeOTFS” creates two
series of uniformly spaced pulses that are root-raised cosine filtered and then shifted by a
specified Doppler frequency:

Suppose we use the same path coefficients as before, but this time the second path is shifted
by merely 0.1 milli-seconds delay and 2 Hz Doppler with respect to the first path:

As an experiment, create the enhanced OTFS waveform, pass it through the channel, and
report the signal energy as follows:

function tx = makeOTFS(tau, fd, a, Fs, Tsym)
%---
% tx = makeOTFS(tau, fd, Fs, Tsym)
%
% Creates an enhanced OTFS signal designed specifically for the 2-path
% channel.
%
% Variable Size I/O Description
% -------- ------- --- ---------------------------------------
% tau 1x2 In Delay for each of two paths in (s)
% fd 1x2 In Doppler for each of two paths in (Hz)
% a 1x2 In Complex coef. for each of two paths
% Fs 1 In Sampling rate in (samples/s)
% Tsym 1 In Symbol Duration in (s)
% tx Varies Out Transmit signal samples as time-series
%
% -Pete Wyckoff, Version 06172025.
%---
 Tp = max(tau) - min(tau); %min. time between all path pairs (s)
 T = 2*Tp; %prototype pulse period (s)

 for m=1:2 %two propagation paths
 t = tau(m):T:Tsym; %pulse times for mth train (s)
 idx = round(t * Fs) + 1; %pulse times for mth train (sample)
 x(m,idx) = exp(1i*2*pi*fd(m)*t); %pulses for mth path
 x(m,idx) = x(m, idx) * exp(-1i*angle(a(m))); %phase adj.
 end

 [num, den] = rcosine(1/Tp, Fs, 'sqrt', 0.4); %pulse filter
 tx = filter(num, den, sum(x)); %sum pulses & filter
 tx = tx / norm(tx, 2); %make unit energy
end %make OTFS

%---
% STEP 1: define channel paths for delay-Doppler multi-path channel
%---
tau = [0 0.1E-3]; %delay in (s)
fd = [0 2]; %Doppler in (Hz)
a = [1E-6 0.5E-6]; %path coefficients (complex)

page 13

page 14

The channel model applies delays, Doppler, magnitude adjustment, and phase rotations:

The function “reportEnergy” computes the energy a prints a message to the terminal window:

%---
% STEP 2: Create OTFS Signal, Pass Through Channel, & Measure Energy
%---
Fs = 1E6; %sampling rate (samples/s)
Tsym = 2; %transmission duration (s)
tx = makeOTFS(tau, fd, a, Fs, Tsym); %build enhanced OTFS waveform
tx = fliplr(conj(tx)); %time-reversed & freq. reversed
rx = channelModel(tau, fd, a, Fs, tx); %pass thru channel
reportEnergy(tx, rx, 'OTFS'); %report results

function y = channelModel(tau, fd, a, Fs, x)
%---
% y = channelModel(tau, fd, a, Fs, x)
%
% Propagates input signal through a model 2-path multi-path channel
%
% Variable Size I/O Description
% -------- ------- --- --
% tau 1x2 In Delay for each of two paths in (s)
% fd 1x2 In Doppler for each of two paths in (Hz)
% a 1x2 In Path coefficient for each of two paths
% Fs 1 In Sampling rate in (samples/s)
% x Varies In Row vector of channel input time-series
% y Varies Out Row vector of channel output time-series
%
% -Pete Wyckoff, Version 06172025.
%---
 hLen = round(max(tau)*Fs) + 2; %length for impulse resp.
 for m=1:2 %loop through 2 paths
 h = zeros(1, hLen); %initialize as all zeros
 h(round(tau(m)*Fs) + 1) = a(m); %path delay & coefficient
 p = conv(x, h); %apply delay & coef.
 lo = exp(1i*2*pi*fd(m)*(0:length(p)-1)/Fs); %path Doppler
 y(m,:) = p .* lo; %apply path Doppler
 end
 y = sum(y); %sum the 2 paths
end %channelModel

function E = reportEnergy(tx, rx, idStr)
 txEnergy_dB = 10*log10(sum(abs(tx).^2));
 rxEnergy_dB = 10*log10(sum(abs(rx).^2));
 if(nargout == 0)
 fprintf('\n%s Transmitted Energy = %.1f (dB)', idStr, txEnergy_dB);
 fprintf('\n%s Received Energy = %.1f (dB) \n', idStr, rxEnergy_dB);
 end
 E = [txEnergy_dB, rxEnergy_dB];
end %reportEnergy

page 14

page 15

As a control group, suppose we test the same channel using a PN sequence waveform using
similar time and bandwidth:

The function “makePN” produces this signal as follows:

The overall script reports the following to the terminal window:

This matches results from earlier, albeit using much smaller delay and Doppler along with a 2
second symbol duration. These make waveform design more complicated yet the new
enhancement to OTFS still improves energy transfer efficiency +1.4 dB versus a PN waveform
that is not designed for the channel.

(Note: this enhanced OTFS waveform is certainly not optimized. For this particular channel,
one could change the frequency of each pulse to boost the efficiency further. One could
alternatively design an LFM that would boost the energy efficiency. However, such approaches
do not extend well to three or more paths in general, so these are not presented here.)

%---
% STEP 3: Create PN Signal, Pass Through Channel, & Measure Energy
%---
Fchip = 10E3; %chip rate (chips/s)
tx = makePN(Fchip, Fs, Tsym); %create a PN signal
tx = fliplr(conj(tx)); %time-reversed & freq. reversed
rx = channelModel(tau, fd, a, Fs, tx); %pass thru channel
reportEnergy(tx, rx, 'PN'); %report results

function tx = makePN(Fchip, Fs, Tsym)
%---
% tx = makePN(Fchip, Fs, Tsym)
%
% Creates a root-raised cosine PN sequence waveform
%
% Variable Size I/O Description
% -------- ------- --- ---
% Fchip 1 In Chip rate in (chips/s)
% Fs 1 In Samp. rate (samples/s) [Integer mult of Fchip!]
% Tsym 1 In Symbol duration in (s)
% tx Varies Out Row vector of transmit signal as time-series
%
% -Pete Wyckoff, Version 06172025.
%---
 chips = sign(randn(1, round(Tsym*Fchip)));
 [num, den] = rcosine(Fchip, Fs, 'sqrt', 0.4); %design filter
 tx = filter(num, den, upsample(chips, Fs/Fchip)); %apply filter
 tx = tx / norm(tx, 2); %make unit energy
end %makePN

OTFS Transmitted Energy = -0.0 (dB)
OTFS Received Energy = -117.6 (dB)

PN Transmitted Energy = -0.0 (dB)
PN Received Energy = -119.0 (dB)

page 15

page 16

Imperfect Phase Knowledge in Two-Path Delay-Doppler Channel

The enhanced OTFS waveform takes advantage of the delay-Doppler channel through super-
position of fields that were emitted at different times into one time-of-arrival at the receiver.
This boosts received energy. It also makes the approach sensitive to phase errors in the
transmitter’s estimate of the channel. Figure 6 compares the new OTFS enhanced waveform
to a genetic PN waveform as the unbiased random phase error on each path estimate
increases. The results are for the two-path channel with the second path shifted 0.1 milli-
seconds in delay and 2 Hz in Doppler with respect to the first path. With no phase error, the
new OTFS extension transfers energy from transmitter to receiver +1.4 dB more efficiently than
generic PN. The boost gradually degrades as the phase error per path increases. At worse
than 80-degrees standard deviation, the new OTFS extension delivers the same energy as a
generic PN signal.

FIGURE 6: New OTFS benefits from accurate phase delivering energy up to +1.4 dB more efficiently vs. PN.

The following code produced Figure 6:

Fs = 1E6; %sampling rate (samples/s)
Tsym = 2; %transmission duration (s)
phaseStd = linspace(0, pi, 41);
TRIALS = 1000;
for test=1:length(phaseStd)
 test
 parfor trial=1:TRIALS
 tx = makeOTFS(tau, fd, a, Fs, Tsym); %build enhanced OTFS waveform
 tx = fliplr(conj(tx)); %time-reversed & freq. reversed
 aMod = a .* [exp(1i*phaseStd(test) *randn(1)), ... %phase error
 exp(1i*phaseStd(test) *randn(1))];
 rx = channelModel(tau, fd, aMod, Fs, tx); %pass thru channel
 E(trial,:) = reportEnergy(tx, rx, 'OTFS'); %report results
 end
 E = mean(10.^(E/10)); %mean in (linear) units
 storeMeanTX_dB(test) = 10*log10(E(1)); %convert to (dB)
 storeMeanRX_dB(test) = 10*log10(E(2)); %convert to (dB)
end

figure;
subplot(211);
plot(rad2deg(phaseStd), storeMeanRX_dB);

0 0.5 1 1.5 2 2.5 3 3.5
-1

-0.5

0

0.5

1

1.5

0 20 40 60 80 100 120 140 160 180
Standard Deviation of Path Phase Error (deg)

-119.5

-119

-118.5

-118

-117.5

R
ec

ei
ve

d
En

er
gy

 (d
B) New OTFS

PN

page 16

page 17

Summary

For multi-path delay-Doppler channels, the efficiency of energy transferred from the transmitter
to the receiver is a function of waveform design. A new extension of OTFS demonstrated one
avenue to boost this energy efficiency as compared to a generic root-raised-cosine filtered PN
waveform. For two paths with coefficients 1E-6 and 0.5E-6, the extension boosted energy
transfer by +1.4 dB versus the generic signal. This performance advantage begins to erode
when there is more than 20 degrees of error on the transmitter’s knowledge of the path phases.
For 80 degrees or more of such error, the designed waveform delivers about the same energy
to the receiver as a generic waveform. Application gains from this approach depend upon
channel estimation performance. As a result, the EME channel is particularly challenging due
to 2.4 seconds of round-trip-delay and it requires further research into channel estimation
approaches that are a separate problem from waveform design.

Acknowledgements

Thanks to Michelle Thompson for enlightening discussions and for hosting Open Research
Institute meetings that inspire new ideas and potential advancements to the radio art. Thanks
to Thomas Telkamp for sharing his Dwingeloo insights and data that inspired new ideas about
delay-Doppler channels for amateur radio experimentation.

About the Author

For more than 20 years, Peter S. Wyckoff has designed and tested a wide variety of digital
communications systems, modems, and antenna arrays, particularly for the satellite
communications industry. He graduated from Penn State University with an MSEE in 2000 and
graduated from Pitt with a BSEE in 1997. Since graduation, he has been awarded seven U.S.
patents, which are mostly about co-channel interference mitigation, antenna array signal
processing, and digital communications. In May 2023, his textbook “Visualizing Signal
Processing with Complex Values” earned Amazon’s #1 best-selling signal processing new
release.

References

[1] Efficiently Using Transmit Symbol Energy via Delay-Doppler Channels — Part I, Open Research Institute Inner
Circle Newsletter, May 2025, p. 12-13.

[2] Efficiently Using Transmit Symbol Energy via Delay-Doppler Channels — Part I, Open Research Institute Inner
Circle Newsletter, May 2025, p. 15-16.

[3] A. Monk, R. Hadani, Mi. Tsatsanis, S. Rakib, OTFS — Orthogonal Time Frequency Space, https://arxiv.org/pdf/
1608.02993

[4]. Efficiently Using Transmit Symbol Energy via Delay-Doppler Channels — Part I, Open Research Institute Inner
Circle Newsletter, May 2025, p. 16.

page 17

page 18

Wireshark Plugin for Opulent Voice

See source code at:
https://github.com/MustBeArt/opv-wireshark-
plugin/

An Opulent Voice station can be divided into
a modem and a host that handles the protocol
from audio down to the bytes in the 40ms Op-
ulent Voice frames. Sometimes these two com-
ponents are connected by Ethernet (or a more
extensive network) and the bytes composing
each frame are encapsulated in a UDP packet.
This dissector helps Wireshark make sense of
these encapsulated frames.

Each frame consists of two major parts: a frame
header, and a payload. The frame header is a
fixed format of 12 bytes. The payload contains
bytes from a COBS-encoded stream of IP pack-
ets. In the common case where the payload con-
tains Opus voice packets, and the voice packets
are synchronized with the frame boundaries, the
payload in a frame corresponds exactly to a sin-
gle COBS-encoded IP/UDP/RTP/Opus packet.
For other payload types, this is not true (except
by coincidence). A frame's payload may consist
of, in order, the last part of one packet, one or
more whole short packets, and the first part of
another packet. Any of these components may
be omitted. The frame boundaries are delimited
by a zero byte, according to the COBS protocol.

Because of the stream nature of the COBS-en-
coded packets, a complete dissector for this
protocol will sometimes have to reassemble
payload packets from the contents of multiple
frames. Because the two ends of this stream
connection are assumed to be part of the same
receiving station, we can safely assume that the
packets will arrive in order and intact a suffi-
ciently high percentage of the time. If you are
implementing a station design in which the mo-
dem and the host are connected over a larger,
more complex network, it is your responsibility
to take steps to ensure that these assumptions
remain true. For instance, you might wrap this
whole protocol in an outer COBS stream and
send that stream via TCP.

Guide to Transmitting DVB-S2 Video
using ORI Encoder

Please visit Aaron Olivarez's site below to read
his report about using the ORI DVB-S2 encoder.

https://olivarez.info/blog/guide-to-
transmitting-dvb-s2-video-using-ori-encoder/

Postlocutor, a Prototype Receiver for
Opulent Voice

This is a simple receiver for the UDP-transported
version of Opulent Voice frames created by
Interlocutor, located at https://github.com/
OpenResearchInstitute/interlocutor

Summary of Classes in the Program:

class OpulentVoiceProtocol (aka OPV)

OpulentVoiceProtocol encapsulates the Opulent
Voice frame header and protocol knowledge.
It provides a number of constant values and
one method, parse_frame(), which extracts the
fields of the frame header.

class AudioPlayer

AudioPlayer uses pyaudio (which uses
PortAudio) to decode Opus voice packets and
send the decoded audio samples to the default
audio output device.

It manages a short queue of pending decoded
audio frames. The queue is filled by calls to
the method decode_and_queue_audio(), and
emptied by callbacks to the method audio_
callback() sent by itself.

It provides start() and stop() methods, which
are called by the methods of the same names of
the OpulentVoiceReceiver object.

It keeps some statistics, which can be copied out
by calling the get_stats() method.

class OpulentVoiceReceiver

page 18

https://github.com/MustBeArt/opv-wireshark-plugin/
https://github.com/MustBeArt/opv-wireshark-plugin/

page 19

OpulentVoiceReceiver operates the receiver
overall. It accepts the incoming UDP-
encapsulated packets by opening a socket and
operating a separate thread running the listen_
loop() method repeatedly. That thread blocks
on a recvfrom() call until a packet arrives, then
calls process_frame() to handle it. process_
frame() is also part of OpulentVoiceReceiver.
This method should (but does not yet) feed the
non-header portion of the UDP-encapsulated
payload to the COBS decoder. If this results in
the completion of a COBS packet, the COBS-
decoded data from that packet is further
analyzed by process_COBS_packet(), which
checks for a valid UDP header and examines the
destination IP address and port number. If this
matches criteria for one of the services known
to Opulent Voice, the packet is further processed
according to the specified service. Otherwise,
the packet is passed through to the host's
network stack (but not yet).

When process_COBS_packet() handles a voice
frame, it invokes AudioPlayer's decode_and_
queue_audio() method to play back the received
audio.

When it handles a text message, it fetches the
station ID from the frame header, decodes it,
and prints a line consisting of the station ID,
a special icon marking this as a text message,
and the text data from the packet payload.

When it handles a control message, it should
(but does not yet) act on the contents of the
control message. Currently, a control message is
handled much like a text message.

Summary of Data/Control Flow:

1) main creates an OpulentVoiceReceiver.
OpulentVoiceReceiver.__init__() instantiates an
OpulentVoiceProtocol. OpulentVoiceReceiver.__
init__() instantiates an AudioPlayer

2) main calls OpulentVoiceReceiver.start() and
then goes into a loop calling time.sleep(1) until
interrupted.

3) OpulentVoiceReceiver.start then creates
and starts a daemon thread running
OpulentVoiceReceiver.listen_loop() to receive
the encapsulated Opulent Voice Packets.

4) listen_loop() sits in a loop calling recvfrom()
on the UDP socket, which blocks and returns
exactly one packet. This loop continues until
self.running is false. Each time a packet is
received, it is passed to self.process_frame()

5) process_frame() calls self.protocol.parse_
frame() to extract the fields of the frame header
(plus a timestamp) into a dictionary, which is
returned.

The payload, which is an IP packet, is passed
into Scapy, resulting in a Scapy packet called
pkt. We check that it's an IP/UDP packet,
confirm its checksums, and get the destination
UDP port number. The port number is used to
determine which service (voice, text, control)
owns the packet.

If it's voice, we send the data to self.audio_
player.decode_and_queue_audio(), which calls
the Opus decoder in self.decoder.decode(), and
adds the resulting frame of audio samples to
self.audio_queue. Meanwhile, self.audio_player
(which is an AudioPlayer) is pulling decoded
audio frames from self.audio_queue via audio_
callback(), and streaming them to the default
audio output device.

If it's a text message, we decode the station_id
to ASCII and print it with the text message data
to the screen.

If it's a control message, we (currently) just
output the text of the control message to the
screen, along with the encapsulating host's IP
address.

If, on the other hand, the packet isn't IP/UDP or
its destination port isn't one known to Opulent
Voice, we currently discard it. Eventually,
this packet will be passed through to the host's
network stack.

page 19

page 20

https://www.youtube.com/@OpenResearchInstituteInc

page 20

mailto:https://www.youtube.com/@OpenResearchInstituteInc

page 21page 21

The Inner Circle
Sphere of Activity

If you know of an event that would welcome ORI, please let your favorite board member know at
our hello at openresearch dot institute email address.

30 June 2025 - Future Amateur Geostationary Payload Definitions comment deadline. Our
submission was submitted on time and has been acknowledged.

20 Jul 2025 - Submission deadline for Open Source Cubesat Workshop, to be held 25–26 October
2025. Location is Serafio of the Municipality of Athens, Greece.

5 August 2025 - Final Technological Advisory Council meeting at the US Federal Communications
Commission (FCC) in Washington, DC. The current charter concludes 5 September 2025.

7-10 August 2025 - DEFCON 33 in Las Vegas, Nevada, USA. ORI plans an Open Source Digital
Radio exhibit in RF Village, which is hosted by Radio Frequency Hackers Sanctuary.

1 September 2025 Our Complex Modulation Math article will be published in ARRL’s QEX magazine
in the September/October issue.

5 September 2025 - Charter for the current Technological Advisory Council of the US Federal
Communications Commission concludes.

19-21 September 2025 - ESA and AMSAT-DL workshop in Bochum, Germany.

25-26 October 2025 - Open Source Cubesat Workshop, Athens, Greece.

Thank you to all who support our work! We certainly couldn’t do it without you.

	 Anshul Makkar, Director ORI
	 Frank Brickle, Director ORI (SK)
	 Keith Wheeler, Secretary ORI
	 Steve Conklin, CFO ORI
	 Michelle Thompson, CEO ORI
	 Matthew Wishek, Director ORI

