
Open Research Institute
Inner Circle Newsletter
February 2025
The Who What When Where Why
Open Research Institute is a non-profit dedicated to open source digital radio work. We do both
technical and regulatory work. Our designs are intended for both space and terrestrial deploy-
ment. We’re all volunteer.
You can get involved by visiting https://openresearch.institute/getting-started

Membership is free. All work is published to the general public at no cost. Our work can be
reviewed and designs downloaded at https://github.com/OpenResearchInstitute

We equally value ethical behavior and over-the-air demonstrations of innovative and relevant
open source solutions. We offer remotely accessible lab benches for microwave band radio
hardware and software development. We host meetups and events at least once a week.
Members come from around the world.

Want more Inner Circle Newsletters?
Use the QR code at left or go to
http://eepurl.com/h_hYzL
and sign up.

https://openresearch.institute/getting-started
https://github.com/OpenResearchInstitute
http://eepurl.com/h_hYzL

page 2

ORI's AmbaSat Payload Moves Forward

AmbaSat writes: "For any space satellite
company, the journey to orbit is filled with
challenges. Designing and testing hardware,
developing software, and securing a launch
provider are all major hurdles. However, one
of the most rigorous and complex aspects
of this journey is meeting the regulatory
requirements for an Orbital Operations
Licence.

After an immense amount of work, we’re
thrilled to announce that we have officially
submitted our Orbital Operations Licence
application to the UK Civil Aviation Authority
(CAA).

This marks a significant milestone for
AmbaSat. It’s been a long road to get here,
filled with dedication, innovation, and
perseverance. Of course, submission is just
the beginning—there’s still plenty of work
ahead. But this moment brings us one step
closer to orbit, and we couldn’t be more
excited.

Now, we enter the final phase of preparation—
think of it as reaching the last level of a
game, where the ultimate challenge awaits:
launching into space."

ORI is an early supporter of AmbaSat and
has used the board in several ways. One of
the modifications to the board can be found
at https://github.com/ambasat/AmbaSat-1/
pull/10

We made a number of these modified boards
and the performance was improved.

We will send our original AmbaSat board in
for integration into the payload and a UK
launch after the license application process
successfully concludes.

We have leveraged AmbaSat to great success
as an educational platform and look forward
to it reaching space.

Earth-Venus-Earth: Bouncing Signals Off
Our Planetary Neighbor

What is the Earth-Venus-Earth Project?

The Earth-Venus-Earth (EVE) project is an
ambitious radio communications experiment
from the citizen science and amateur radio
communities working to bounce radio signals
off the planet Venus and receive them back
on Earth.

Why Venus?

Venus is our closest planetary neighbor and
presents a fascinating target for radio experi-
ments. When Venus is at its closest approach
to Earth, we have the best chance of using it
as a reflective surface for certain radio fre-
quencies. By bouncing signals off Venus, we
can:

1. Push the boundaries of amateur radio capa-
bilities
2. Gather more data about Venus's atmo-
spheric and surface communications reflec-
tivity properties
3. Develop techniques that could be useful for
future deep space amateur communications
4. Achieve something extraordinary with open-
source technology and collaborative effort

Our Contribution: Can the Connection be
Made?

One of the most crucial aspects of any radio
communications project is understanding
whether a signal can successfully travel from
point A to point B (and in our case, back to
point A again). This is where our work on the
EVE link budget comes in.

What's a Link Budget?

A link budget is essentially an accounting of
all the factors that strengthen or weaken a
radio signal as it travels. Imagine tracking a
water droplet's journey through a series of
pipes, pumps, and filters – you need to know

page 2

page 3

where water is added or lost to understand if
enough will reach the destination. Or imagine
tracking your income and expenses over the
course of a month.

Similarly, with radio signals, we need to ac-
count for:

- How much power we can transmit from Earth
- How much signal is lost traveling through
space
- How much signal scatters when it hits Venus
- How much returns toward Earth
- How sensitive our receiving equipment must
be to detect the returning signal

Our Achievements

Volunteers at Open Research Institute have
developed a comprehensive link budget model
for the EVE project that demonstrates feasi-
bility, required specifications, timing windows,
and open collaboration.

1. Feasibility: We've shown that with access to
some of the largest amateur dishes, such as
at DSES, Dwingeloo, Stockert, and potentially
other sites, that amateur radio equipment and
techniques can potentially bounce signals off
Venus. Probably the most significant contribu-
tion is showing mathematically how difficult
EVE is and how nearly all weak signal modes
that currently exist in amateur radio will not
close the link.

2. Required Specifications: We've determined
the minimum requirements for transmitters,
antennas, and receivers needed to make this
connection. We've contributed several new
sections and quantified techniques for this
attempt.

3. Timing Windows: We've mapped the optimal
time periods when Venus is positioned cor-
rectly relative to Earth for successful signal
reflection, and identified challenging charac-
teristics in the radio environment.

4. Open Collaboration: All our calculations,

models, and results are openly shared, al-
lowing amateur radio operators worldwide to
participate in, critique, correct, or reproduce
our work.

What Makes This Special

What sets our work apart is that we're ap-
proaching this as an open research initiative.
The link budget work we've completed serves
as a roadmap for anyone interested in partici-
pating in or learning more about Earth-Venus-
Earth communications.

Next Steps

With our link budget analysis nearing comple-
tion we're now considering putting together
an Earth-Mars-Earth link budget. We are also
studying the possibility of whether distrib-
uted receivers can be used for Earth-Moon-
Earth to achieve anything of note.

Join the Exploration

If you're interested in radio, space, or in-
novative open research, we welcome your
participation. The beauty of open research
is that everyone brings unique perspectives
and skills that strengthen the entire project.
Visit the Open Research Institute website at
https://openresearch.institute/getting-start-
ed to learn how you can be part of this excit-
ing journey to bounce signals off our plane-
tary neighbor.

This project represents the collaborative
effort of many contributors at Open Research
Institute, advancing our understanding of
both radio technology and our solar system
through open development and shared dis-
covery.

Current link budget can be found at https://
github.com/OpenResearchInstitute/docu-
ments/blob/master/Engineering/Link_Bud-
get/Link_Budget_Modeling.ipynb

page 3

page 4

AI/ML at ORI - Activity Reports

page 4

page 5

AI/ML at ORI - Activity Reports

page 5

page 6

Successful Collaboration with
IEEE Leads to Practical AI/ML
Design Work at ORI

Michelle Thompson W5NYV and Matthew
Wishek NB0X organized a meetup about the
Role of Artificial Intelligence and Machine
Learning (AI/ML) in Register Transfer Logic
Design (RTL) Generation. The Open Source
Digital Radio IEEE Local Group and the San
Diego Chapter of the IEEE Information Theory
Society co-hosted the online event. The
meeting was held on 28 January 2025 and
a recording can be found at https://youtu.
be/8xDxeUxWTCc

AI/ML in RTL Design Generation
In the meeting, Michelle and Matthew
presented about the potential of artificial
intelligence and machine learning in
Electronic Design Automation (EDA)
frameworks. The central question of the
meetup was to try and answer where the
AI/ML can help the RTL design generation
process. They identified core concepts from
an open-source perspective and discussed
the importance of reducing schedule,
technical, and cost risks in the design
process. Matthew highlighted the iterative
nature of the design process and the need
for early identification of design deficiencies
and incorrect assumptions. He also suggested
the use of AI agents to guide the high-level
synthesis process, assist in design space
exploration, and improve the
performance of place and route.

Michelle discussed the potential
of open-source EDA and shared
specific recommendations from a
European white paper " Roadmap
and Recommendations for Open
Source EDA in Europe", which
can be found at https://fossi-
foundation.org/resources/eu-
roadmap.

Michelle highlighted the

challenges of limited access to EDA software
and the semiconductor workforce shortage
in the US. These are problems also shared by
the tech industry in Europe. She mentioned
the positive impact of open-source initiatives
like the RISC-V processor and the Google
Skywater Process Design Kit (PDK). The
technical recommendations from the paper
included focusing more on analog and
mixed-signal designs, interoperability and
verification, and system-on-chip integration.
She also emphasized the importance of
proper licensing, funding, sustainability, and
industry training for both open-source and
AI/ML projects. Another recommendation
from Free and Open Source Silicon (FOSSi)
Foundation was for more conferences,
workshops, and events to better distribute
the vast amount of innovative and exciting
information and developments in this field.

Michelle discussed the use of large language
models and automated writing of HDL for
design IP. She shared her experience with
ORI's Remote Labs Matlab HDL Coder toolbox,
which can produce high-quality, human-
readable HDL code but requires a lengthy
process and is not suitable for complex
monolithic designs. She also mentioned the
use of AI and ML in deep learning hardware
models and their potential to inform the
design process. Michelle explained a survey
of experts in the field (see summary below),
which showed a bias towards proprietary
tools being perceived as high-quality, and
lesser expecations concerning quality from

page 6

page 7

both Open Source and AI/ML tools. Matthew
then introduced a set of relevant papers he
had found in his literature search, focusing
on areas such as RTL generation, hardware
verification, testbench generation, and
formal verification. His call for action was to
try to put some of the potential of the work
published in these papers to inform and
improve the design process into actual Open
Source practice.

Matthew talked about about the role of of
AI/ML in analog design, signal processing,
and network planning. He suggested that
AI tools can help with analog design,
potentially enabling non-specialists to
experiment and learn. He discussed the
use of AI/ML in detecting convolutional
codes, channel estimation, and radio map
generation for network planning. There is
significant overlap with information theory

in these applications, particularly in tracking
entropy levels in codes and signals. Michelle
mentioned that the Information Theory and
Applications Workshop 9-14 February 2025
would probably have a lot of AI/ML content.
She then described successful technology
demonstrations by DARPA in 2019 showing
improved spectrum efficiency using AI/
ML models. This proof of concept from
DARPA sparked a great deal of interest from
academia, industry, and regulators.

Daniel, Michelle, and Matthew discussed the
pros and cons of using proprietary versus
open-source Electronic Design Automation
(EDA) tools. Michelle described the challenges
of open-source projects, such as the lack of
funding, limited market size, and difficulty
in maintaining quality. Matthew shared his
experience with open-source simulators,
noting their limitations in terms of feature
set parity and language coverage. Daniel
suggested that open-source solutions might
take longer to develop but could benefit
from advancements in AI tools. Michelle
and Matthew agreed that the EDA market is
small, which contributes to the high cost of
proprietary tools. The consensus from the
participants was that while there are good
open-source projects addressing AI/ML in
RTL design generation, many of them may not
yet be ready for complex designs.

It was resolved to pick one or more of the
many tools and projects mentioned in the
presentation, and give it a try. Reports about
the first-hand experiences would then be
shared in future IEEE meeting collaborations,
to put the recommendations from FOSSi and
the rubrics from Matthew into better context.

AI RTTY and DeepReceiver
After the EDA meeting, the search for
applications of interest to the ORI community
sharpened into further focus.

Matthew found a survey paper "Deep Learning
in Wireless Communication Receiver: A Study"
by Doha and Abdelhadi. One of the references

page 7

page 8

was a paper about a project called DeepReceiver, titled "DeepReceiver: A Deep Learning-Based
Intelligent Receiver for Wireless Communication in the Physical Layer". These papers helped us
figure out the next step for the Artificial Intelligent Radio Teletype (RTTY) receiver project.

Up until this point, the machine learning model identified one stand-alone individually
transmitted RTTY letter at a time. The DeepReceiver paper provided the inspiration and the
education to update the model to something much more realistic.

In order to be useful, an AI RTTY receiver has to be able to translate whole "sentences" of RTTY
"speech", and not just individual characters given one at a time.

How is was ORI's artificially intelligent RTTY receiver constructed?

Read on for a draft of RTTY Receiver by Artificial Intelligence.

page 8

page 9

RTTY Receiver by Artifical Intelligence
Michelle Thompson W5NYV, Open Research Institute, Inc.

20 February 2025

Table of Contents

Introduction...1
Confirm Basic RTTY Functionality in MATLAB... 1
Data Set Generation...2

Create Data Set of Synthesized RTTY Signals with AWGN...2
Create Messages..7
Create Signals.. 8

Visualization of an RTTY Signal... 9
Optionally Play all RTTY Signals.. 10
Configure Sets of Audio Features...10

Extract Audio Features from our Signals.. 11
Calculate Indices for Training, Validation, and Test Sets.. 11
Fill Training, Validation, and Test Sets with Input and Output Data...12

How Is a Neural Net Trained?...12
Define the Machine Learning Model...13
Define the Hyperparameters.. 15
Train Network..16
Evaluate Network..18
Conclusion..21

What are the next steps? ...21
Technical Resources and Acknowledgements..22

Introduction
Radio Teletype, or RTTY, is a binary frequency shift keying (FSK) signal that encodes keyboard data for
communications. This is a popular amateur radio mode with a long history. An introduction to RTTY can be read
at https://en.wikipedia.org/wiki/Radioteletype.

Our end goal of this work is to create a machine learning (ML) model that can demodulate and decode an
RTTY message received over the air. ML is one way that artificial intelligence (AI) is implemented. This article
captures the current state of this work. We want to show how AI/ML can be used in amateur radio, and explain
the process, with an accessible and familiar application.

This work was inspired by a Mathworks AI Workflow seminar held in Carlsbad, CA, in June 2024. At this
event, a demonstrated audio example was worked out for attendees. The example can be found at https://
www.mathworks.com/help/deeplearning/ug/acoustics-based-machine-fault-recognition.html

Confirm Basic RTTY Functionality in MATLAB
First, we set up, exercised, and verified the basic RTTY functions used in this project. These RTTY functions in
MATLAB are from work by Ben Bales.

Bales, Benjamin, "Low Power RTTY and PSK31 Decoder for Ham Radio Applications" (2011). Chancellor’s
Honors Program Projects. https://trace.tennessee.edu/utk_chanhonoproj/1350

audiodevreset

1 page 9

page 10

msg = 'HELLO WORLD';
filename = "airtty.txt";
snr = 3;
Fs = 176/(1/45.45);

First we reset our audio device to avoid an intermittent error (Device Error: Internal Device error) encountered
on some versions of MacOS.

The message that we want to send is contained in msg, a string.

We write our RTTY values out to a file. We set that filename with the variable filename.

We set a signal to noise ratio for our generated RTTY signal with the variable snr.

We pick a sample rate that gives an integer number of samples per training window of one symbol
period. Our target sample rate is 8000 Hz, which matches the sample rate specified in the function file
gen_rtty_for_mplab_sim.m. We want our sample rate to match the one used to generate the RTTY
signals.

gen_rtty_for_mplab_sim(msg, filename, snr)

We call this function. It generates the RTTY signal from the message we created at the snr we gave it, and it
writes the resulting audio output to a file.

play_rtty(msg, snr)

We play the signal from the computer speakers to confirm we have created a RTTY signal.

Data Set Generation
We next generate a large data set of RTTY signals. We are using RTTY signal data synthesized by MATLAB
to train, validate, and test our machine learning model insteads of signals recorded off the air. We train on all
the individual letters (and figures). We will train over a range of randomly generated signal to noise ratios. The
data set is a dictionary of signals paired with the RTTY characters used to generate the signal, with a random
level of noise added to the signals. Our motivation is to train a model that will decode individual letters correctly.
We include a noisy radio environment in the training. The question that we want to answer is "Given a received
signal, what was the most likely letter sent?"

Create Data Set of Synthesized RTTY Signals with AWGN
data_set_size = 128*100;

We decide how large of a data set we are going to work with. This set will be divided into training, validation,
and testing subsets. We set the variable data_set_size to the total number of signals used for training,
validation, and testing.

message_length =10;
message = cell(data_set_size,1);

2page 10

page 11

We decide how long of a training message we are going to work with. Look at the size of our HELLO WORLD
test message. It looks like it has eleven letters. We could and should have random length messages to better
match up with real world received signals, but our first experiment was single characters selected at random
from the RTTY letters only. After that was working, we added in the figures alphabet. Our current experiment is
messages that are ten characters, all randomly selected from the RTTY letters and figures alphabet.

Now that we have determined the message length, we set up a cell array that is data_set_size rows by 1
column in size. This array will hold our our randomly generated messages, one message per row. Next we fill up
this cell array with randomly generated messages.

randsample() arguments are: ([randomly selected number from a particular set], sample length of 1, 'true'
indicates we sample with replacement)

char(my_string1) converts a numeric array to a character array. This conversion uses unicode.

The character set for RTTY is [0 5 7 10 13 32 33:35 38 40 41 44:59 63 65:90]. char function returns the
unicode character corresponding to the number randomly selected from the set.

But, it's not quite that simple. RTTY uses Baudot encoding, which means that each character is five bits long.
Five bits lets us encode thirty-two different things. But, we have more than thirty-two letters and figures that we
want to use. The solution in RTTY is to re-use the five bit encodings. We will have to double up. Letters in one
set, and figures in another. But, how do we tell if we sent a letter versus a figure?

There are two additional symbols. LTRS (11111) and FIGS (11011). If we receive a LTRS, then starting with the
next character, and continuing until we get a FIGS, we extract the five binary digits that were sent, and then use
the letters table to look it up. If we receive a FIGS, then starting with the next character, and continuing until we
get a LTRS, we extract the five binary digits that were sent, and then use the figures table to look it up. We don't
print out the LTRS or FIGS. They are control characters that tell us what we really meant when we said "Catch
that bat!" Do we chase a small flying mammal, or do we grab a piece of sports equipment that slipped out of
a batter's hands? For example, "K" and "(" both use the same binary representation (01111) over the air. LTRS
and FIGS tells us which character was intended to be sent by the transmitting station.

decimal = [0 5 7 10 13 32 33:35 38 40 41 44:59 63 65:90]';
character = char(decimal);
ascii_table = table(decimal, character)

ascii_table = 55×2 table

decimal character

1 0

2 5

3 7

4 10

5 13

6 32

3 page 11

page 12

decimal character

7 33 !

8 34 "

9 35 #

10 38 &

11 40 (

12 41)

13 44 ,

14 45 -

15 46 .

16 47 /

17 48 0

18 49 1

19 50 2

20 51 3

21 52 4

22 53 5

23 54 6

24 55 7

25 56 8

26 57 9

27 58 :

28 59 ;

29 63 ?

30 65 A

31 66 B

32 67 C

33 68 D

34 69 E

35 70 F

36 71 G

37 72 H

38 73 I

39 74 J

4page 12

page 13

decimal character

40 75 K

41 76 L

42 77 M

43 78 N

44 79 O

45 80 P

46 81 Q

47 82 R

48 83 S

49 84 T

50 85 U

51 86 V

52 87 W

53 88 X

54 89 Y

55 90 Z

Note we have a problem. On my system, ENQ and BEL are both a square character representation when run
through the char() function. Null, carriage return, space, and line feed all seem to come up as empty. Some
character encodings still need some work to properly represent.

We are wanting to use string representations to train our model, so we do need to make sure that we represent
our messages correctly.

number character

0 NUL (Null) - defined

5 ENQ (Enquiry) - substituted with $

7 BEL (Bell, Alert) - substituted with single quote

10 LF (Line feed) - undefined

13 CR (Carriage return) - undefined

32 SP (Space) - undefined

Let's talk about ENQ and BEL. Enquiry asks the receiving station to send back some sort of identification. For
example, a call sign, or tactical ID, or company name. Bell or Alert causes an alert or bell sound to ring at the

5
page 13

page 14

receiving station. In RTTY charts, BEL can also be a single quote. And, ENQ can also be $. So, we make this
adjustment to get printable characters for BEL and ENQ. The numbers for $ and single quote are 36 and 39.
For now, we drop Null, Line Feed, Carriage Return, and Space and substitute in dollar sign and single quote for
Enquiry and Bell.

%decimal = [0 10 13 32 33:35 36 38:40 41 44:59 63 65:90]';
decimal = [33:35 36 38:40 41 44:59 63 65:90]';
character = char(decimal);
ascii_table = table(decimal, character)

ascii_table = 51×2 table

decimal character

1 33 !

2 34 "

3 35 #

4 36 $

5 38 &

6 39 '

7 40 (

8 41)

9 44 ,

10 45 -

11 46 .

12 47 /

13 48 0

14 49 1

15 50 2

16 51 3

17 52 4

18 53 5

19 54 6

20 55 7

21 56 8

22 57 9

23 58 :

24 59 ;

25 63 ?

26 65 A

6page 14

page 15

decimal character

27 66 B

28 67 C

29 68 D

30 69 E

31 70 F

32 71 G

33 72 H

34 73 I

35 74 J

36 75 K

37 76 L

38 77 M

39 78 N

40 79 O

41 80 P

42 81 Q

43 82 R

44 83 S

45 84 T

46 85 U

47 86 V

48 87 W

49 88 X

50 89 Y

51 90 Z

Create Messages
my_string5 = categorical([1,message_length]);

for q = 1:data_set_size
%for q = 1:2

for n = 1:message_length
 my_string5(n) = char(randsample(decimal,1,true));

end
 message{q,1} = my_string5;
end

7
page 15

page 16

We create data_set_size random strings and put them in the message cell array. Each row has a
message that we will "send" as a RTTY signal. my_string5 is a categorical data type and has a size
of 1 row by message_length columns. We loop data_set_size times. Each time we loop, we start a new
loop, message_length long. In this experiment, we loop 10 times because we want messages that are 10
characters long. For this loop, each time we go through it we select one of the values in decimal at random,
we turn that number into its unicode character representation, and put it in to the categorical array called
my_string5. This is how we build up a message, character by randomly selected character. When we are
done with each individual 10-character message, we drop out of the inner loop, copy my_string5 over to our
message array, and move on to the next message, until we've filled in data_set_size messages.

Create Signals
signals = cell(1,data_set_size);

We set up a cell array called signals. This will hold the signals of the time series of binary fsk values calculated
by the gen_rtty function and modified by awgn. Each column is a separate calculated signal that is generated
by a corresponding message in message. The number of columns is controlled by set_data_size. Each
signal is a time series representing the voltage values of the RTTY signal.

rng('shuffle');

We initialize a random number generator based on the current time with 'shuffle' as the argument to rng,
resulting in a different sequence of random numbers after each call.

snr = (randi([0,60],1,data_set_size));

We are going to have an array of values called snr. Our randomly generated signal to noise ratios will be held in
here.

The command randi([imin imax],m,n) generates a random integer between imin and imax, with the
result in an m by n matrix. We generate the random numbers for signal to noise ratio in advance and then index
into the array to access them, so that we do not repeat the random number generator evey time we run the loop.
This may save time for large data sets.

for i = 1:data_set_size
 signals{1,i} = awgn(gen_rtty(Fs, 1275, 1455, 1 / 45.45, 2,
char(message{i}(:))'), snr(i));
 signals{1,i} = signals{1,i}/max(signals{1,i});
end

We have a loop. Each time we go through the loop we calculate a set of values that represent a RTTY signal
sending a particular message at a particular signal to noise ratio. At the end of the loop we have a full set
of synthesized signals. The synthesized signals are stored in the columns of a cell array called signals. We
have also normalized the data by dividing each element of the signal by the maximum value of that signal. This

8page 16

page 17

gets you the desired SNR as long as there are enough bits of resolution per sample. Since it reduces the signal
amplitide to make room for the biggest signal plus noise sample, it also introduces quantization noise in the
signal.

The command gen_rtty(Fs, Fmark, Fspace, Tsymbol, stopBits, message) is from Ben Bales'
work.

Visualization of an RTTY Signal
indx = 1:size(signals{1,4},2);
indy = signals{1,4};

A picture is worth a thousand words, so let's see what a signal looks like. We create the inputs to a plot. The
x index (indx) is just that, an index of how many values are in the signal. We obtain this by selecting the fourth
row of the signals cell array. This element is a row vector, so we want to indicate to the size function that we are
looking for the number of columns in the element. The number of columns is the second dimension, which is the
reason for the number 2 as the second argument to the size function. The y index (indy) is the row vector itself
of the fourth row of the signals cell array. We needed the size to construct our x axis index array. Our y axis is
the actual values of the signal.

figure(1)
plot(indx,indy)
str = ['Example RTTY Signal with SNR of ', num2str(snr(4))];
title(str);

9
page 17

page 18

We tell MATLAB that we want a figure, and that it is figure 1. The x axis is the number of elements in the fourth
row of the signals array. The y axis is the values in the fourth row of the signals array. We plot the RTTY signal,
which is what it looks like sending the fourth message in our data set over the air.

Optionally Play all RTTY Signals
false

ans = logical
 0

if ans == 1
for i = 1:data_set_size

 audiodevreset;
 soundsc(signals{1,i}, Fs);
 pause(2);

end
end

We know now many signals are in our data set. Let's listen to all of them! If the check box is active, then we loop
through all our signals and play them. We reset the audio devices before we play each signal, to avoid some
common problems on some platforms. We include a pause of 2 seconds because that helped prevent problems
on the computer used to write the script. We do this to confirm that we are playing a collection of RTTY signals
at different signal to noise ratios, each with a different short message. For large data sets, playing all of the
audio files would take a very long time, so this off by default.

Configure Sets of Audio Features
windowLength = Fs*(1/45.45);
overlapLength = floor(windowLength/2);
f1 = 2125;
f2 = 2295;

afe = audioFeatureExtractor(SampleRate=Fs, ...
 Window=hamming(windowLength,"periodic"),...
 OverlapLength=overlapLength,...
 pitch=true, ...
 spectralCentroid=true, ...
 harmonicRatio=true);

We define the audio features that we want to extract from each signal with audioFeatureExtractor. We
store this configuration in the variable afe. For this feature set, we focus on features that let us extract our FSK
tones quickly and efficiently. The features we want to extract are marked true if they are calculated and false
if they are skipped.

10
page 18

page 19

Window length is how much of the signal we are looking at at one time. windowLength is calcluated to be
about one RTTY symbol length long. It's parameterized so if we change the sample rate or baud rate then our
code will still work. We set the overlapLength to be about half of the windowLength. This gives us the
ability to catch transitions without spending an excessively long time doing math. We have the two baseband
amateur radio RTTY tones as references. Right now, we are not using them in the code, but there are some
audio features that take frequencies as inputs. We have them assigned "just in case" we need them at some
point.

Extract Audio Features from our Signals
audio_features = cell(data_set_size,1);
tic
for e = 1:data_set_size
 audio_features{e,1} = extract(afe, signals{1,e}')';
end
disp("Feature extraction took " + toc + " seconds.");

Feature extraction took 73.5535 seconds.

We set up the audio_features cell array. It has data_set_size rows and one column. We loop through the
size of our data set and extract the audio features from each of our signals. Our current experiment produces
three sets of audio features per signal. We store the three rows of results in the corresponding row of the
audio_features cell array. The extract function expects the signal data to be a column vector, so we
transpose it here. We also transpose the result of the extraction. We do this so that our audio features cell array
"looks right" to the functions in the deep learning toolbox that we are going to use. The data hasn't changed, but
it does matter to certain functions if it's arranged in columns versus rows.

Calculate Indices for Training, Validation, and Test Sets
population_splits = [0.8,0.1,0.1]

population_splits = 1×3
 0.8000 0.1000 0.1000

We create an array that defines the proportions of the training set, the validation set, and the test set. The three
elements must add to 1. A common set of proportions is 0.8, 0.1, and 0.1, which stands for 80% training data,
10% validation data, and 10% test data. Training data is data that we are going to use to train our machine
learning model. Validation data is used to monitor and adjust the learning process along the way. Test data is
used after the machine learning model is trained in order to test its performance.

training_indices = [1:floor(population_splits(1)*data_set_size)];
validation_indices = training_indices(end) +
[1:floor(population_splits(2)*data_set_size)];
test_indices = validation_indices(end) +
[1:floor(population_splits(3)*data_set_size)];

11 page 19

page 20

Using the number of rows in our record, which is equal to the number of signals synthesized, we calculate the
indices of the training set, the validation set, and the test set. We use these arrays of index values to fetch rows
from the corresponding category. In other words, the elements of test_indices will correspond to the rows in
the record we have designated for testing.

The first set of indices (training_indices) is calculated by multiplying the proportion of the first category
times the total number of records in the table, and creating an array of 1 to that number. The second set of
indices is calculated by multipling the proportion for the second category times the total number of records in the
table, creating an array of 1 to that number, and then adding an offset equal to the ending index from the first
category. This shifts the second category array up the correct number of positions so that it falls immediately
after the first category. The third set of indices is calculated by multiplying the proportion for the third category
times the total number of records in the table, creating an array from 1 to that number, and then adding an
offset equal to the ending index of the second category. This creates three disjoint sets of indices following the
proportions in population_splits. In order to ensure we get integer results from multiplying by a float, we
use the floor function.

Fill Training, Validation, and Test Sets with Input and Output Data
indx = training_indices(1):training_indices(end);
training_set = audio_features(indx,1);
training_labels = message(indx,1);

indx = validation_indices(1):validation_indices(end);
validation_set = audio_features(indx,1);
validation_labels = message(indx,1);

indx = test_indices(1):test_indices(end);
test_set = audio_features(indx,1);
test_labels = message(indx,1);

We used logical indexing to create the index array indx for our three cases. We use this array to section off
three matched sets of audio features in audio_features and their corresponding messages in message. We
now have three tables of training, validation, and test sets of audio features (an analysis of our RTTY signals)
with matching labels (the messages that we used to create the RTTY signals).

How Is a Neural Net Trained?
We have matching pairs of input and output data, separated into three sets. We want to use a neural net to
predict outputs based on new inputs. We need to teach the neural network how to interpret new input, based on
known input-output pairs. How is this done?

Imagine teaching a new soccer referee how to run games. The process would look like this:

Obtain a Library of Previously Played Games (Training Data):

12
page 20

page 21

You give the new referee a collection of called games. Infractions are matched up with calls. Each called game
is like one training example. The more diverse the calls the new ref sees, the better they'll handle different
situations when they have to call a live game.

Learning Process (Training):

The ref starts by making decisions about each of the pre-called games. After each decision, you tell them how
close they were to the "right" answer. They adjust their approach based on how far off they were. This happens
thousands of times with different scenarios

Fine-tuning (Optimization):

If the ref is changing their style too drastically after each feedback session (we've all seen refs that are
inconsistent and we don't want that), then you might tell them to make smaller adjustments. If they're not
adapting quickly enough, you might encourage bigger changes. You keep adjusting these learning factors until
they're improving at a good pace and "getting the hang of it".

Testing (Validation):

Finally, you give them completely new games they've never seen. This tells you if they've truly learned how to
ref a game, or if they've just memorized the practice games. If they just memorized the practice games, then the
only infractions they call correctly are ones they've already seen.

The key idea is: Just like a ref learns from many examples and gradually adjusts their approach based on
feedback, a neural network learns by seeing many examples and adjusting its internal connections based on
how well it's doing.

Define the Machine Learning Model
We define our machine learning model in an array called layers. Models are also called networks. A diagram
of our model is below.

13
page 21

page 22

The first layer is sequenceInputLayer. It takes the number of extracted features as an argument. We get the
number of features from the audio feature extractor structured variable afe.

The next layer is a bilstmLayer, which stands for bidirectional long short-term memory (BiLSTM) layer for
recurrent neural network (RNN). This is a layer that learns long-term dependencies, in both directions, between
time steps of time series or sequence data. Since we have control characters that determine which set of
characters we use for translation, there is a long-term memory type of effect from the control character. A
BiLSTM layer, set up to translate one sequence to another sequence, seems like a good place to start. The
parameter given to this layer is the number of hidden nodes. The number of nodes in a layer is the number of
artificial neurons. Hidden nodes encode a characterization of the data from the previous time steps.

The next layer is a dropout layer called dropoutLayer. The parameter for this layer is a dropout probability.
The main reason for using dropout is to help prevent overfitting. This is where a model performs really well on
training data but poorly on new data. We want our model to be able to do some generalization, and this layer
helps achieve that goal. We randomly pick the dropout percentage of neurons and erase them.

14page 22

page 23

We have a second bilstmLayer with more neurons, and then another dropout layer.

Next is fullyConnectedLayer or a fully connected layer. The parameter is set to the size of our alphabet.
This translates from the number of neurons in the previous layer to the number of different things that we need
to identify. In other words, the size of the set of items we are trying to distinguish. At the time of this writing,
we were going from 128 neural nodes to 51 characters. However, we need to set the number of outputs to
51+1. MATLAB's trainNetwork is expecting our output layer to account for our 51 characters and a potential
"background" or "null" character class, which brings the total to 52. This is particularly common when working
with image classification tasks and categorical data (like our data).

Next is the softmaxLayer. This layer converts the raw outputs from the fully connected layer into probabilities.
It does this by taking the exponential of each of the outputs, and then dividing by the sum of all these
exponentials. In other words, we normalize our outputs in this layer.

The final layer is a classification layer, or classificationLayer. It looks at all the probabilities for all the
potential outputs, and selects the one with the highest probability.

dropProb = 0.2;
layers = [...
 sequenceInputLayer(afe.FeatureVectorLength)
 bilstmLayer(64) %,OutputMode="sequence")
 dropoutLayer(dropProb)
 bilstmLayer(128) %,OutputMode="sequence")
 dropoutLayer(dropProb)
 fullyConnectedLayer(length(decimal)+1) %set to size of our alphabet + 1
 softmaxLayer
 classificationLayer];

Define the Hyperparameters
options = trainingOptions("adam", ...
 MaxEpochs=100, ...
 MiniBatchSize=32, ...
 GradientThreshold=1, ...
 Plots="training-progress", ...
 ExecutionEnvironment="parallel", ...
 Verbose=false);

Imagine you're playing the game Dungeons and Dragons and you are creating a new character. Before you
even start rolling stats or choosing spells, you have to make high-level decisions like:

What level will you start at? How many players will be in the party? What's the maximum number of spells you
can learn?

15
page 23

page 24

Hyperparameters in machine learning are similar to these high level decisions. We set up a structured variable
called options by using the trainingOptions function. The parameters are key value pairs given as
arguments to this function. They are set up before we do any training, just like rolling up a character before
a role-playing game session. If we choose a character very well-suited to the gaming environment, then
we are likely to do better than if we rolled up a weak or ill-suited character. The same thing goes for our
hyperparameters.

Some examples from our MATLAB machine learning toolbox include:

Learning rate: This is like choosing how cautiously your character advances. A high learning rate means taking
big, bold steps (risking overshooting), while a low rate means moving carefully but potentially taking longer to
reach the goal.

Batch size: Similar to deciding how many encounters your party faces before taking a long rest. Larger batches
give more stable but slower training, while smaller batches are faster but potentially more erratic.

Number of epochs: Like deciding how many training sessions your character needs before facing the Big Bad
Evil Guy (BBEG). More epochs mean more training time but potentially better performance.

Network architecture (layer sizes, number of layers): This is like designing your character's class structure - how
many levels in each class, what abilities you'll have access to.

Execution Environment: this lets us do things like let us use our multiple CPU system, which is sort of like being
able to play multiple characters at the same time. When we set it to "parallel", we use eight CPUs instead of just
one.

Mini Batch Size: this is how many signals we train on at once. We don't want to train on one signal at a time.
We probably don't want to train on all our signals at once. Common mini-batch sizes are powers of 2 (32, 64,
128, 256) because they optimize well with GPU memory. The right size depends on several factors, such as the
available memory, the dataset size, model complexity, and how stable we want our training to be. In our gaming
analogy, this would be like how many monsters we try to take on at the same time. One at a time makes for a
very long dungeon crawl. Taking on the entire orc army would result in a brutally short end to our character's
career. There is an ideal range of batch size, and getting as close to that as possible increases the quality of our
training.

Gradient Threshold: this is a safety mechanism for training. Too much "gain" in the training from step to step can
cause bad results, like undefined results, extremely large results, and oscillations. If we get unstable training,
then we lower the threshold. If training is too slow, and things aren't converging, then we raise the threshold. If
training is always stable and predictable, then we can try removing the threshold entirely to see if our particular
model needs this safety mechanism at all. This is like deciding how much risk your character will take in a
gaming session. You can rush in and start all the fights as quickly as possible, or you can hang back and
investigate everything and take it very slowly.

We can also do things like set up plots and make the debug verbosity high, so that we generate more errors and
warnings in order to solve problems more quickly.

Train Network

16page 24

page 25

For sequence-to-sequence training in MATLAB, we need to make the dimensions of training_labels match
the time dimension of training_set. We have the same situation for the validation and test sets. Each feature
sequence needs its corresponding label sequence of the same length in order for the math to work. What we
do is expand the particular message label, the ten characters we sent, out so that there's a letter for every time
step in our signal feature extraction. It's about 25 steps per character.

We then train our model on the signal features, alongside our expanded data labels, using the layers we set up,
and the options. In the graph, the upper curve is model accuracy. The lower graph is the amount of loss, or the
pentalty score for being wrong. We should see the accuracy climb over time and the loss go down. The loss
gives insight to the confidence level of the model. For example, a model could make a prediction with just 51%
certainty. Another model could make the same prediction with 99% certainty. Both models are "correct", but the
loss would show up for 51% certainty as much higher than the 99% certainty. Loss gives us insight into training
so that we can improve the confidence or certainty of our model.

% Make each label sequence match its corresponding feature sequence
numSequences = numel(training_set);
training_labels_expanded = cell(size(training_set));

for i = 1:numSequences
% Get current sequence lengths

 [~, numTimeSteps] = size(training_set{i});
 numWords = length(training_labels{i});

% Calculate steps per word
 stepsPerWord = floor(numTimeSteps/numWords);

% Expand labels to match time steps
 expanded = [];

for j = 1:numWords
 expanded = [expanded repmat(training_labels{i}(j), 1, stepsPerWord)];

end

% Handle any remaining time steps
if length(expanded) < numTimeSteps

 padding = repmat(expanded(end), 1, numTimeSteps - length(expanded));
 expanded = [expanded padding];

end

 training_labels_expanded{i} = expanded;
end

% Now train with expanded labels
trained_net = trainNetwork(training_set, training_labels_expanded, layers,
options);

17 page 25

page 26

Evaluate Network
Next we view the confusion chart for the validation data, test data, and histogram of figures and letters used in
this training run. A confusion chart is a two-dimensional chart with the character that was sent on the vertical
axis, and the classified result from the trained model on the horizontal axis. If we were 100% correct, we'd get
a solid diagonal line from upper left to bottom right. Mistakes show up off this diagonal axis of true class versus
matching predicted class. We can see the one extra class we put in. It's the missing place in the diagonal on the
upper left of the chart. This extra character was included in order to account for the data type we were using. It's
blank because it wasn't trained and therefore isn't assigned to any of the received signals.

First we check our validation data. Then, we check our test data. If we see large difference between validation
and data sets, then we might have a case of overfitting. We should see roughly the same results from validation
as we do from test. Validation data is used as part of the process of training, but the test set is set aside until
training is complete, and then used to see how well the model performed.

We need to convert the time-step predictions back into character sequences. Since we had to stretch out the
time-step predictions to train, we have to do the reverse process so that we can get the mapping we want.

% Get predictions for each sequence
validationResults = classify(trained_net, validation_set);

% Convert time-step predictions back to word sequences
numSequences = numel(validation_set);
compressedPredictions = categorical([]);
originalLabels = categorical([]);

18
page 26

page 27

for i = 1:numSequences
% Get predictions for this sequence

 seqPredictions = validationResults{i};
 numPreds = length(seqPredictions);

% Each sequence should contain message_length words (10)
 wordsPerSequence = message_length;
 stepsPerWord = floor(numPreds/wordsPerSequence);

% Compress predictions into words
 wordSeq = categorical([]);

for j = 1:wordsPerSequence
 startIdx = (j-1)*stepsPerWord + 1;
 endIdx = min(j*stepsPerWord, numPreds);
 segment = seqPredictions(startIdx:endIdx);
 wordSeq = [wordSeq mode(segment)]; % Most common prediction in
segment

end

 compressedPredictions = [compressedPredictions wordSeq];
 originalLabels = [originalLabels validation_labels{i}];
end

% Now create confusion matrix
confusionchart(compressedPredictions, originalLabels, ...

'Title', "Validation Accuracy: " + ...
 mean(compressedPredictions == originalLabels)*100 + " (%)");

19 page 27

page 28

% Get predictions for each sequence
testResults = classify(trained_net, test_set);

% Convert time-step predictions back to word sequences
numSequences = numel(test_set);
compressedPredictions = categorical([]);
originalLabels = categorical([]);

for i = 1:numSequences
% Get predictions for this sequence

 seqPredictions = testResults{i};
 numPreds = length(seqPredictions);

% Each sequence should contain message_length words (10)
 wordsPerSequence = message_length;
 stepsPerWord = floor(numPreds/wordsPerSequence);

% Compress predictions into words
 wordSeq = categorical([]);

for j = 1:wordsPerSequence
 startIdx = (j-1)*stepsPerWord + 1;
 endIdx = min(j*stepsPerWord, numPreds);
 segment = seqPredictions(startIdx:endIdx);
 wordSeq = [wordSeq mode(segment)]; % Most common prediction in
segment

20
page 28

page 29

end

 compressedPredictions = [compressedPredictions wordSeq];
 originalLabels = [originalLabels test_labels{i}];
end

% Now create confusion matrix
confusionchart(compressedPredictions, originalLabels, ...

'Title', "Test Accuracy: " + ...
 mean(compressedPredictions == originalLabels)*100 + " (%)");

Conclusion
We have successfully trained a model that accepts audio features derived from RTTY audio signals, and outputs
the most likely character sequence that was used to create the RTTY signal. We used synthesized RTTY
signals and augmented each signal with a random amount of noise in order to produce a variety of signal to
noise ratios in the input.

What are the next steps?
Add in the line feed, carriage return, space, and null.

Train on random length messages that have the statistics of RTTY messages, instead of messages that look like
a cryptographic code block. This might change (possibly reduce) the size of the trained model.

Move to training on received quadrature modulation (IQ) data instead of audio output, in order to incorporate
more of the radio chain and make this receiver more generally useful in modern digital radio systems. An

21 page 29

page 30

advantage of the audio version is that it can use any legacy or analog radio, reducing barriers to using neural
networks with older radios.

Take this MATLAB model and convert it to hardware descriptive language, so that it can be deployed on a
software defined radio.

Technical Resources and Acknowledgements
A listing of the dependent files and MATLAB toolboxes used in this document is printed below.

[flist, plist] =
matlab.codetools.requiredFilesAndProducts('airtty_project_five_letters.mlx')

flist = 1×4 cell
'/home/matt/AIRTTY/airtty_project_five_letters.mlx''/home/matt/AIRTTY/gen_rtty.m
plist = 1×6 struct

Fields Name Version ProductNumber Certain

1 'MATLAB' '9.14' 1 1

2 'Signal Processing Toolbox' '9.2' 8 1

3 'Deep Learning Toolbox' '14.6' 12 1

4 'Statistics and Machine Learning Toolbox' '12.5' 19 1

5 'Communications Toolbox' '8.0' 36 1

6 'Audio Toolbox' '3.4' 151 1

Thank you to Open Research Institute (https://openresearch.institute) for making this work possible by providing
expert advice, community feedback, a MATLAB license with Deep Learning, and remotely accessible computer
resources.

As mentioned in the introduction, the event that sparked this project was a Mathworks AI Workflow seminar held
in Carlsbad, CA, in June 2024. At this event, a demonstrated audio example was worked out for attendees.
The example can be found at https://www.mathworks.com/help/deeplearning/ug/acoustics-based-machine-fault-
recognition.html

RTTY functions in MATLAB are from work by Ben Bales.

Bales, Benjamin, "Low Power RTTY and PSK31 Decoder for Ham Radio Applications" (2011). Chancellor’s
Honors Program Projects. https://trace.tennessee.edu/utk_chanhonoproj/1350

Finally, the large language model Claude was used to quickly search through MATLAB documentation and find
recommended design patterns from a wide variety of computer programming forums and discussions on the
internet. This saved a very large amount of time compared to "Googling" MATLAB documentation by hand. The
code in this document benefited from using these AI/ML searches in two ways. First, by showing a common
design pattern for constructing the message cell arrays, which reduced the number of lines of code. Second, by
suggesting that stretching the message out to match the feature set, instead of decimating the sample set to
match the number of characters in the letters. This improved the flow of the code and preserved data resolution.

22
page 30

page 31

ORI Celebrates National Engineers Week 16-23 February 2025

We were delighted to be part of the San Diego County Engineering Council's annual awards
banquet and celebration of Engineer's Week.

We were able to present our work and give away some keepsake items at the San Diego Section
IEEE booth. Thank you to IEEE for sharing their space with us so that we can spread the word
about open source digital radio.

Questions and comments we fielded at the event included:

"How does it work when you give away your solutions? Isn't that stealing?"

"How do you make money doing this?"

"Does anyone use open source designs?"

"I've heard of open source software, but I've never heard of open source hardware."

It was a great opportunity to educate people about open source software, firmware, and
hardware, the value it brings to technology in general and the value it brings to digital
communications, including the Internet, specifically. Below, we were included with IEEE in a
group photo.

page 31

page 32

“Take This Job”

Interested in Open Source software and hardware? Not sure how to get started? Here’s some
places to begin at Open Research Institute. If you would like to take on one of these tasks,
please write hello@openresearch.institute and let us know which one. We will onboard you
onto the team and get you started.

Opulent Voice:
•	 Add a carrier sync lock detector in VHDL. After the receiver has successfully synchronized

to the carrier, a signal needs to be presented to the application layer that indicates suc-
cess. Work output is tested VHDL code.

•	 Bit Error Rate (BER) waterfall curves for Additive White Gaussian Noise (AWGN) channel.
•	 Bit Error Rate (BER) waterfall curves for Doppler shift.
•	 Bit Error Rate (BER) waterfall curves for other channels and impairments.
•	 Review Proportional-Integral Gain design document and provide feedback for improvement.
•	 Generate and write a pull request to include a Numerically Controlled Oscillator (NCO)

design document for the repository located at https://github.com/OpenResearchInstitute/
nco.

•	 Generate and write a pull request to include a Pseudo Random Binary Sequence (PRBS)
design document for the repository located at https://github.com/OpenResearchInstitute/
prbs.

•	 Generate and write a pull request to include a Minimum Shift Keying (MSK) Demodulator
design document for the repository located at https://github.com/OpenResearchInstitute/
msk_demodulator

•	 Generate and write a pull request to include a Minimum Shift Keying (MSK) Modulator de-
sign document for the repository located at https://github.com/OpenResearchInstitute/
msk_modulator

•	 Evaluate loop stability with unscrambled data sequences of zeros or ones.
•	 Determine and implement Eb/N0/SNR/EVM measurement. Work product is tested VHDL

code.
•	 Review implementation of Tx I/Q outputs to support mirror image cancellation at RF.

Haifuraiya:
•	 HTML5 radio interface requirements, specifications, and prototype. This is the user inter-

face for the satellite downlink, which is DVB-S2/X and contains all of the uplink Opulent
Voice channel data. Using HTML5 allows any device with a browser and enough processor
to provide a useful user interface. What should that interface look like? What functions
should be prioritized and provided? A paper and/or slide presentation would be the work
product of this project.

•	 Default digital downlink requirements and specifications. This specifies what is transmitted
on the downlink when no user data is present. Think of this as a modern test pattern, to
help operators set up their stations quickly and efficiently. The data might rotate through
all the modulation and coding, transmititng a short loop of known data. This would allow a
receiver to calibrate their receiver performance against the modulation and coding signal to
noise ratio (SNR) slope. A paper and/or slide presentation would be the work product of this
project.

page 32

page 33

https://www.youtube.com/@OpenResearchInstituteInc

page 33

mailto:https://www.youtube.com/@OpenResearchInstituteInc

page 34page 34

The Inner Circle
Sphere of Activity

February 18, 2025 - San Diego County Engineering Council Annual Awards Banquet. ORI was part
of the IEEE Table display in the organizational fair held on site before dinner. ORI was represented
by two members.

Schedule is clear until our conference season starts in August with DEFCON 33.

Until then, we'll be working hard in Remote Labs and publishing our work.

Thank you to all who support our work! We certainly couldn’t do it without you.

	 Anshul Makkar, Director ORI
	 Frank Brickle, Director ORI (SK)
	 Keith Wheeler, Secretary ORI
	 Steve Conklin, CFO ORI
	 Michelle Thompson, CEO ORI
	 Matthew Wishek, Director ORI

