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The Who What When Where Why
Open Research Institute is a non-profit dedicated to open source digital radio work. We do 
both technical and regulatory work. Our designs are intended for both space and terrestrial 
deployment. We’re all volunteer. 
You can get involved by visiting https://openresearch.institute/getting-started 

Membership is free. All work is published to the general public at no cost. Our work can be 
reviewed and designs downloaded at https://github.com/OpenResearchInstitute 
 
We equally value ethical behavior and over-the-air demonstrations of innovative and 
relevant open source solutions. We offer remotely accessible lab benches for microwave 
band radio hardware and software development. We host meetups and events at least once a 
week. Members come from around the world. 

Want more Inner Circle Newsletters? 
Use the QR code at left or go to 
http://eepurl.com/h_hYzL 
and sign up. 
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Opulent Voice moves from real to complex 
modulation. See page 6 to find out why. 

Exponential moving what? See page 2!
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What’s all this Fixed-Point Math Stuff, Anyhow? 
With apologies to Bob Pease 

 

Person 1: Hey, whatcha doing? Looks like something cool. 

Person 2: Working on a Simulink model for an MSK model. 

Person 1: Oh, that’s fun, how about I code up the modem in VHDL this weekend? 

Person 2: Sounds great! 

Famous last words, amirite? It has been many months - ahem 10 - since that pseudo 
conversation occurred. In that time there have been missteps, mistakes, and misery. We 
have come a long way, with internal digital and external analog loopback now working 
consistently, although unit to unit transmission isn’t quite there yet. 

This is one way to do hardware development. Write some HDL code, simulate, and 
iterate. Once the simulation looks good, put it in an FPGA, test it, and iterate. You’ll get 
there eventually, but there will be some hair pulling and teeth gnashing along the way. 
But, it is worth the effort when you finally see it working, regardless (and because) of all 
the dumb mistakes made along the way. 

There are many ways to approach a design problem, some better than others, and as 
with all things engineering, it’s a trade-off based on the overall design context. At 
opposing ends of the spectrum we have empirical and theoretical approaches. 
Empirical: build based on experience, try it, fix it, rinse and repeat. And, theoretical: 
build based on theory, try it, fix it, etc. Ultimately we must meet in the middle (and there 
is never getting away from the testing and iterating). 

Starting from first principles always serves us well. One of the niggling points in the 
Minimum-Shift Keying (MSK) development has been selection of bit-widths for the 
signal processing chains. 

Person 1 (yeah, that’s me): I’ll code it up this weekend. Let’s see, for the modulator we 
need data in, that’s 1-bit. The data gets encoded, still 1-bit. The data modulates a sine 
wave, hmmm, how many bits should that be? Well the DAC is 12-bits, so we should use 
a 2’s complement 12-bit number. That seems right. 

Person 1: Now for the demodulator. The ADC outputs 12-bits, so a 2’s complement 
12-bit number. That gets multiplied by a sine wave, let’s use a 2’s complement 12-bit 
number since we did that in the modulator. The multiply output is 24-bits, ok. Now we 
integrate that 24-bit number over a bit-period, hmmm, how many bits after the 
integration? No worries, let’s just make it 32-bits and keep on. But that is a lot of bits, 
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let’s just scale the 32-bits down to 16-bits and keep going. Ah, the empirical approach, 
I’m getting so much done! 

Person 1: Why isn’t this working? Oh, the 16-bit number is overflowing. I wish I could 
just make it 32-bits again, but that’s too many bits for the multiplier. 

There is a better way! We can analyze the design from some starting point, such as, the 
number of input bits. From there we operate on those bits, adding, subtracting, 
multiplying, shifting, etc. And we know how each of those operations affects the bit 
widths, which allows us to choose appropriate bit-widths through the signal chain. 
Before we get there we need to take a quick look at fixed point math and related 
notation. 

In our everyday base 10 math we have, essentially, infinite precision. One example is 
that irrational numbers can be expressed as fractions, and we can operate on those 
fractions and the infinite precision is maintained as long as we can keep the fractional 
representation. Often, though, we will need to use an approximation of the fraction to 
get an actual answer to a problem. One example is  and we have to 1/3 = 0. 33333...
choose how many digits of 3 we need for the particular problem at hand. And, we know 
there is an error term when we use such an estimation ( ). 1/3 = 0. 333 + ϵ

Base 2 math is largely the same, but hardware can’t use fractional representations, 
meaning that an irrational number will always be a finite representation. Also, we may 
be constrained in how many bits we can use to represent numbers. We need a way to 
notate these numbers. 

Texas Instruments created Q-notation as a way to specify fixed-point numbers. The 
notation Qm.n is used to represent a signed 2’s complement number where m is the 
number of whole bits and n is the number of fractional bits. TI specifies m to not include 
the sign-bit, while ARM specifies m to include the sign bit. The table below shows 
examples of Q-notation using both TI and ARM variants. 

 

Table 1. Q-Notation Examples 

Total Bits ARM Q Format TI Q Format Range Resolution 
8 Q3.5 Q2.5 -4.0 to +3.96875  2−5

16 Q4.12 Q3.12 -8.0 to +7.9997558594  2−12

24 Q8.16 Q7.16 -128.0 to +127.9999847412  2−16

32 Q8.24 Q7.24 -128.0 to +127.9999999404  2−24

8 UQ8.3 UQ8.3   0.0 to +255.875  2−3

10 Q1.10 Q10 -1.0 to +0.9990234375  2−10
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The table below shows how bit widths are affected by various operations. 

 

Table 2. Math operators affect on bit-widths 

Operation Input Numbers Output 
+/- Qm.n +/- Qx.y Qj.k where j = max(m,x)+1 and k = max(n,y) 
* Qm.n * Qx.y Q(m+x).(n+y) 
>> Qm.n >> k Qm.(n-k) 
<< Qm.n << j Qm(n+j) 

 

The diagram below shows an exponential moving average circuit with signal bit-widths 
notated as Qm.d. You can see the bit widths adjusted as we shift, multiply, add, etc. 
Since the output is an average of the input, it should have the same representation as 
the input (Qm.d). The lower representation (i.e. Q22.0 for the input) is an actual 
bit-width selection based on targeting the Zynq7010 and its 25x18 hardware multipliers. 
Some particular notes: 

1. The Q22.0 input is specified by the surrounding system. It is left-shifted by 2-bits 
(Q22.2) to fully utilize the 25-bit multiplier input thus increasing the resolution. 

2. The alpha input is specifically chosen to be Q17 to fully utilize the 18-bit multiplier 
input. 

3. The bottom multiplier is in a feedback path, its output must match the upper 
multiplier output so that the binary points are aligned into the adder. To this end 
the adder output is truncated and rounded by 18-bits. 
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Figure 1. Exponential Moving Average Block Diagram 
 
 
The adder output is truncated and rounded by 20-bits for the final output. 

In summary Q-notation is a useful tool for understanding and specifying system 
bit-widths throughout the processing chain. It is especially useful to add Q-notation to 
the block diagram to help visualize the bit-widths. With this approach the optimal 
bit-widths should become apparent when taking into account system requirements. 
Doing this system analysis step before writing any code will save time and effort by 
reducing errors. The other benefit is that device resources are not over utilized, which 
may make the difference between fitting in an FPGA or not. 

Additional reading and resources are available at these URLs: 

● Read more about Q-notation at Q (number format) - Wikipedia 
● Try out the Q-notation calculator at Q-format Converter & Calculator 
● A Python package for Fixed-point math is at fixedpoint 1.0.1 Package 

Documentation including explanations of Q-notation and how bit-widths are 
affected by arithmetic. 

As the saying goes, mind your Ps and Qs. 

 

Matthew Wishek, NB0X 
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The magic of radio is rooted in mathematics. Some 
of that math can be complicated or scary looking. 
We are going to break things down bit by bit, so that 
we can better understand what it means when we say 
that we are going to transmit a complex baseband 
signal. 

Everything that we are going to talk about today 
is based on a single carrier real signal, even when 
we get to complex transmission. A single carrier 
real signal is where we take our data, a single-
dimensional value that we want to communicate, 
and we multiply it by a carrier wave (a cosine wave) 
at a carrier frequency (fc). Let's call the value we 
want to communciate "alpha". 

Because we are dealing with digital signals, the value 
that we are transmitting is held for a period of time, 
called T. The next period of time we send another 
constant value. And, so on. We are sending discrete 
values for a period of time T, one after another until 
we are all done sending data, and not continuous 
values over time.  
 
Let's say we are sending four different amplitudes 
to represent four different values. During each time 
period T we select one of these four amplitude 
values. We hold that value for the entire time period. 
These values can be thought of as single dimensional 
values. One value uniquely identifies the value we 
want to send. In this case, amplitude.  
  
Sending one of four values at a time means we are 
sending two bits of data at a time. 

alpha bits
0 00
1 01
2 10
3 11 
 
In order to send our value out over the air from 

transmitter to receiver, we multiply our alpha by our 
carrier frequency. The result is alpha*cos(2*pi*fc*t). 
Cosine is a function of time t. The 2*pi term 
converts radians per second to cycles per second, 
which is something that most of us find easier to 
deal with. When we multiply in the time domain, 
we cause a different mathematical thing to happen 
in the frequency domain. Multiplication is called 
convolution in the frequency domain. This 
mathematical process creates images, or copies, of 
our baseband signal in the frequency domain. One 
image will be located at fc and the other will be 
located at -fc. 

Our real signal has a special characteristic. It's 
symmetric. At the receiver, we multiply what we 
receive by that same cosine wave, cos(2*pi*fc*t). 
We multiply in the time domain, and we convolve 
in the frequency domain. This results in images 
at 2*fc, -2*fc, and most useful to us, we get two 
images at 0 Hz. We use a low-pass filter to get rid 
of the unwanted images at 2*fc and -2*fc, and by 
integrating over the time period T, we get a scaled 
version of the original value (alpha) that was sent. 
Amazing! We reversed the process and we got our 
original sent value. 

So what's all this complex signal stuff all about? Why 
mess with success? We have our single carrier signal 
and our four values. What more could we want?  
 
Well, we want to be able to send more than a shave 
and a haircut number of bits! 
 
If we want to send more bits in the same time period 
(and who doesn't?) then we must use a bigger 
alphabet. Let's double our throughput. We now pick 
from sixteen different amplitudes, sending the value 
we picked out for a period of time T as a single-
carrier real signal. Now, each alpha value stands for 
four bits.
 

Real and Complex Signal BasicsReal and Complex Signal Basics
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We have a minor problem. Sending out sixteen 
different voltage levels on a single carrier means 
that we have to be able to differentiate between finer 
and finer resolution at our receiver. Before, we only 
had to distinguish between four different levels. 
Now we have sixteen. This means we better have a 
really clear channel and a lot of transmit power. But, 
we don't always have that. It's expensive and a bit 
unreasonable. There is a better way.

We know we now want 
to send out (at least) 
one of sixteen values, 
not just one of four. 
If we turn our one-
dimensional problem 
into a two-dimensional 
problem, and assign a 
real single carrier signal 
to, say, the vertical 
dimension, and then a 
second real single 
carrier signal to the horizontal dimension, then we 
are now enjoying the outer limits of digital signal 
processing. The vertical handles four levels. The 
horizontal handles four levels. We still have the 
same time period T. We just have a two-dimensional 
coordinate system instead of a one-dimensional 
coordinate system.

alpha bits  alpha bits
0 0000  8 1000
1 0001  9 1001
2 0010  10 1010
3 0011  11 1011
4 0100  12 1100
5 0101  13 1101
6 0110  14 1110
7 0111  15 1111 

But how can we send two real signals over the air, at 
the same time? We can't just add them together, can 

we? They will step on each other and we'll get a noisy 
mess at the receiver. Math saves us! We can actually 
add these two signals together, send them as a sum, 
and then extract each dimension back out. But, only 
if we prepare them properly. And here is how that is 
done. 

Look at the two-dimensional diagram of 16QAM. 
The vertical axis is labeled Q, and the horizontal 
axis is labeled I. When we want to indicate the 
vertical dimension of our value (pick any one of 
them), then we take that vertical dimension (say, -1 
for 1111) and we multiply it by sin(2*pi*fc*t). We 
now have our Q signal. Now we need the horizontal 
location of 1111. That would be +1 on the I axis. We 
multiply this value, giving the horizontal dimension, 
by cos(2*pi*fc*t). We now have our I signal. Q 
axis value was multiplied by sine. I axis value was 
multiplied by cosine. These signals are played for 
the duration of the sample period. Both of them 
happen at the same time to give a coordinate pair for 
a particular alpha.  
 
We add the I and Q signals together and transmit 
them. We are sending (I axis value) * cos(2*pi*fc*t) + 
(Q axis value) * sin(2*pi*fc*t).  
 
At the receiver, we take what we get and we split the 
signal. We now have two copies of what we received. 
We multiply one copy by cos(2*pi*fc*t). We multiply 
the other by sin(2*pi*fc*t). We integrate over our 
time period T. This is important because it lets us 
take advantage of several trig identities.  
 
First, let's multiply and distribute our cos(2*pi*tfc*t) 
across the summed signals we received. We multiply:
 
[(I axis value) * cos(2*pi*fc*t) + (Q axis value) * 
sin(2*pi*fc*t)] * cos(2*pi*fc*t)  
 
And rewrite it to distribute our cos(2*pi*fc*t).  
 

Real and Complex Signal BasicsReal and Complex Signal Basics

16QAM signal diagram
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(I axis value) * cos2(2*pi*fc*t) + (Q axis value) * 
sin(2*pi*fc*t)*cos(2*pi*fc*t) 
 
Aha! We can convert that cos2() term to something 
we can use. Use the half angle identity, square each 
side, and double all the angle measurements (easy, 
right?). After this cleverness, this is what we have. 
 
cos2(2*pi*fc*t) = 1/2*[1 + cos(2*pi*2fc*t)] 

So now we have 
 
(I axis value) *  1/2*[1 + cos(2*pi*2fc*t)] 
 
See that 2fc term in there? Check out the notebook 
drawing for our signal in the frequency domain. 
It's at 2fc. Q signal is on the right-hand half of the 
drawing. 
 
Let's rearrange things.

(I axis value/2)  + [(I axis value/2) * cos(2*pi*2fc*t)] 
 
Remember we are integrating over time at the 
receiver. We have one of the two terms rewritten 
in a useful way. What happens when we integrate 
a cosine signal from 0 to T? That value happens to 
be zero! This leaves just the integration of (I axis 
value/2)! 
 
The result at the receiver for the multiplication and 
integration of the first copy of the received signal is 
(I axis value)*(T/2). We know T, we know what the 
number 2 is, so we know the I axis dimension value.  
 
But wait! We forgot something. We only did the first 
part.  
 
Remember we had  
 
(I axis value) * cos2(2*pi*fc*t) + (Q axis value) * 
sin(2*pi*fc*t)*cos(2*pi*fc*t) 
 
We recovered I axis value from the term before the 
plus sign. But what about the term after the plus 
sign? 
 
(Q axis value) * sin(2*pi*fc*t)*cos(2*pi*fc*t) 
 

Uh oh we didn't get away from summing the I and Q 
together after all... 
 
Trig saves us here too. When we integrate 
sin(2*pi*fc*t)*cos(2*pi*fc*t) from 0 to period T, it 
happens to be zero. The entire Q axis value term 
drops out. Does the same technique work for the 
copy of the received signal that we multiply by 
sin(2*pi*fc*t)?  
 
You bet it does! First, let's multiply and distribute 
our sin(2*pi*tfc*t) across the second copy of the 
summed I and Q signals we received. We multiply:
 
[(I axis value) * cos(2*pi*fc*t) + (Q axis value) * 
sin(2*pi*fc*t)] * sin(2*pi*fc*t)  
 
And rewrite it to distribute our cos(2*pi*fc*t).  
 
(I axis value) * cos(2*pi*fc*t) * sin(2*pi*fc*t) + (Q 
axis value) * sin(2*pi*fc*t)*sin(2*pi*fc*t)
 
Now that we know that integrating cos(2*pi*fc*t)
sin(2*pi*fc*t) from 0 to T is zero, we can drop out 
the I axis value term. That's good because we already 
have it from multiplying our received summed signal 
by cos(2*pi*fc*t) and doing trigonomtry tricks.  
 
We are left with 

(Q axis value) * sin(2*pi*fc*t)*sin(2*pi*fc*t)
 
And we rewrite it

(Q axis value) * sin2(2*pi*fc*t) 
 
And use the half angle trig identity, square each side, 
and then double all angle measurements.  
 
We can replace sin2(2*pi*fc*t) with 

1/2*[1 - cos(2*pi*2fc*t)]

which gives us
 
(Q axis value) * 1/2*[1 - cos(2*pi*2fc*t)]

And we rewrite it as
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(Q axis value/2) - [(Q axis value/2)*cos(2*pi*2fc*t)]

Hey, guess who goes to zero again? That's right, 
cosine integrated from 0 to T is zero. We are left with 
a  constant term that integrates out to (Q axis value) 
* (T/2) 
 
So when we multiply the summed signal that we 
received by cosine, we get I axis value. When we 
multiply the summed signal that we received by sine, 
we get Q axis value.  
 
I and Q give us the coordinates on the 16 QAM 
chart. As long as we are in sync with our transmitter 
(a whole other story) and as long as our map of 
which point stands for which label (read your 
documentation!) is the same as at the transmitter, 
then we have successfully received what was sent 
using a technique called quadrature mixing.  
 
Moving from a single carrier real signal to a 
"complex" signal, where two real signals are sent at 
the same time using math to separate them at the 
receiver, gives us advantages with respect to sending 
more bits without having to send more levels. Our 
two signals are each handling four levels, but using 
the results in a two-dimensional grid gives us more 

bits per unit time without having to change our 
performance expectations. Sending sixteen different 
levels is harder than sending four. So, we send four 
twice and use some mathematical cleverness.  
 
However, doing this complex modulation scheme 
gives us yet another advantage. Because of the math 
we just did, we eliminate an entire image when 
compared to a single carrier real signal. We have a 
less difficult time with filters because we no longer 
create a second image. Below (next page) are some 
diagrams of how this happens.  
 
A third advantage of I and Q modulation is that it 
doesn't just do things like 16QAM. Using an I and 
a Q, and a fast enough sample period T, means you 
can send any type of modulation or waveform. Now 
that's some power! 
 
This technique does require some signal processing 
at the receiver. But, this type of signal handling is 
at the heart of every software defined radio. And, 
now you know how it's done, and the reasons why 
Opulent Voice is now using complex modulation in 
the PLUTO SDR implementation. 
 
-Michelle Thompson W5NYV
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Adding a Preamble to Opulent Voice
Looking at the Opulent Voice protocol overview diagram below, we can see that each transmission begins with 
a preamble. This section of the transmission contains no data, but is extremely helpful in receiving our digital 
signal.  
 
The preamble is like a lighthouse for the receiver, revealing a shoreline through the fog and darkness of 
interference and noise. While we may not need the entire 40 milliseconds of preamble signal to acquire phase 
and frequency, so that we are “on board” for the rest of the transmission, keeping the preamble at the length of 
a frame simplifies the protocol.  
 
There is a similar end of transmission (EOT) frame, so that the receiver knows for sure that the transmitted 
signal has ended, and has not simply been lost. This will reduce the uncertainty at the receiver, and allow it to 
return to searching for new signals faster and more efficiently.  
 
For minimum shift keying, the modulation of Opulent Voice, a recommended preamble data stream in binary 
is 1100 repeating. In other words, we’d get a frame’s worth of 11001100110011001100... at 54.2 kilobits per 
second for 40 milliseconds. 
 
After the preamble is sent, data frames are sent. Note that there is a synchronization segment at the beginning 
of each frame. This keeps the receiver from drifting and improves reliability.  
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Constructing the Preamble in Simulink and in HDL 

Below is the Simulink model output viewer showing the 1100 repeating pattern mathematical construction, 
followed by the planned update for the hardware description language (HDL) code updates. The target for 
HDL firmware is the PLUTO SDR.   -Opulent Voice Team

1 Feb 2025
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“Take This Job”
 
Interested in Open Source software and hardware? Not sure how to get started? Here’s some places to begin 
at Open Research Institute. If you would like to take on one of these tasks, please write hello@openresearch.
institute and let us know which one. We will onboard you onto the team and get you started. 

Opulent Voice:
• Add a carrier sync lock detector in VHDL. After the receiver has successfully synchronized to the car-

rier, a signal needs to be presented to the application layer that indicates success. Work output is tested 
VHDL code. 

• Bit Error Rate (BER) waterfall curves for Additive White Gaussian Noise (AWGN) channel.
• Bit Error Rate (BER) waterfall curves for Doppler shift.
• Bit Error Rate (BER) waterfall curves for other channels and impairments.
• Review Proportional-Integral Gain design document and provide feedback for improvement. 
• Generate and write a pull request to include a Numerically Controlled Oscillator (NCO) design docu-

ment for the repository located at https://github.com/OpenResearchInstitute/nco. 
• Generate and write a pull request to include a Pseudo Random Binary Sequence (PRBS) design docu-

ment for the repository located at https://github.com/OpenResearchInstitute/prbs.
• Generate and write a pull request to include a Minimum Shift Keying (MSK) Demodulator design docu-

ment for the repository located at https://github.com/OpenResearchInstitute/msk_demodulator 
• Generate and write a pull request to include a Minimum Shift Keying (MSK) Modulator design docu-

ment for the repository located at https://github.com/OpenResearchInstitute/msk_modulator
• Evaluate loop stability with unscrambled data sequences of zeros or ones.
• Determine and implement Eb/N0/SNR/EVM measurement. Work product is tested VHDL code.
• Review implementation of Tx I/Q outputs to support mirror image cancellation at RF. 

Haifuraiya:
• HTML5 radio interface requirements, specifications, and prototype. This is the user interface for the 

satellite downlink, which is DVB-S2/X and contains all of the uplink Opulent Voice channel data. Using 
HTML5 allows any device with a browser and enough processor to provide a useful user interface. What 
should that interface look like? What functions should be prioritized and provided? A paper and/or slide 
presentation would be the work product of this project. 

• Default digital downlink requirements and specifications. This specifies what is transmitted on the 
downlink when no user data is present. Think of this as a modern test pattern, to help operators set up 
their stations quickly and efficiently. The data might rotate through all the modulation and coding, trans-
mititng a short loop of known data. This would allow a receiver to calibrate their receiver performance 
against the modulation and coding signal to noise ratio (SNR) slope. A paper and/or slide presentation 
would be the work product of this project.
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https://www.youtube.com/@OpenResearchInstituteInc
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The Inner Circle
Sphere of Activity
January 6, 2025 - All labs re-opened. Happy New Year! 
 
January 13, 2025 - ORI presented to Deep Space Exploration Society about our history and projects line-up.  
 
January 18, 2025 - San Diego Section of IEEE Annual Awards Banquet. ORI volunteers supported this event as a 
media and program sponsor. ORI was represented by five members. 

January 23-26, 2025 - IEEE Annual Meeting for Region 6 and Region 4, ORI was represented by three members.  
 
January 28, 2025 - Co-hosted the IEEE Talk “AI/ML Role in RTL Design Generation” with the Information 
Theory Society and the Open Source Digital Radio San Diego Section Local Group.  
 
February 18, 2025 - San Diego County Engineering Council Annual Awards Banquet. ORI will be part of the 
IEEE Table display in the organizational fair held on site before dinner. ORI will be represented by at least one 
member. 
 
 
Thank you to all who support our work! We certainly couldn’t do it without you. 

 Anshul Makkar, Director ORI
 Frank Brickle, Director ORI 
 Keith Wheeler, Secretary ORI
 Steve Conklin, CFO ORI
 Michelle Thompson, CEO ORI
 Matthew Wishek, Director ORI


