

Generating HDL Code from Simulink

Training Objectives
This two-day course shows how to generate and verify HDL code from a Simulink® model using
HDL Coder™ and HDL Verifier™.

Topics include:

• Preparing Simulink models for HDL code generation
• Generating HDL code and testbench for a compatible Simulink model
• Performing speed and area optimizations
• Integrating handwritten code and existing IP
• Verifying generated HDL code using testbench and cosimulation

Prerequisites
Signal Processing with Simulink or equivalent experience using Simulink

Products
• HDL Coder™
• HDL Verifier™
• Fixed-Point Designer™

Course Outline

Day 1 of 2

Preparing Simulink Models for HDL Code Generation (2.0 hrs)
Objective: Prepare a Simulink model for HDL code generation. Generate HDL code and testbench
for simple models requiring no optimization.

• Preparing Simulink models for HDL code generation
• Generating HDL code
• Generating a test bench
• Verifying generated HDL code with an HDL simulator

Fixed-Point Precision Control (3.0 hrs)
Objective: Establish correspondence between generated HDL code and specific Simulink blocks in
the model. Use Fixed-Point Tool to finalize fixed point architecture of the model.

• Fixed-point scaling and inheritance
• Fixed-Point Designer workflow
• Fixed-Point Tool
• Command-line interface

Generating HDL Code for Multirate Models (1.0 hrs)
Objective: Generate HDL code for multirate designs.

• Preparing a multirate model for generating HDL code
• Generating HDL code with single or multiple clock pins
• Understanding and applying techniques used for clock domain crossing

Day 2 of 2

Optimizing Generated HDL Code (2.5 hrs)
Objective: Use pipelines to meet design timing requirements. Use specific hardware
implementations and share resources for area optimization.

• Generating HDL code with the HDL Workflow Advisor
• Meeting timing requirements via pipelining
• Choosing specific hardware implementations for compatible Simulink blocks
• Sharing FPGA/ASIC resources in subsystems
• Verifying that the optimized HDL code is bit-true cycle-accurate
• Mapping Simulink blocks to dedicated hardware resources on FPGA

Using Native Floating Point (2.0 hrs)
Objective: Implement floating point values and operations in your HDL code.

• Why and when to use native floating point
• Target-independent HDL code generation with HDL Coder
• Fixed-point vs. floating point comparison
• Optimization of floating point implementations

Interfacing External HDL Code with Generated HDL (1.0 hrs)
Objective: Incorporate hand-written HDL code and/or vendor party IP in your design.

• Interfacing external HDL code

Verifying HDL Code with Cosimulation (2.5 hrs)
Objective: Verify your HDL code using an HDL simulator in the Simulink model.

• Verifying HDL code generated with HDL Coder
• Comparing manually written HDL code with a "golden model"
• Incorporating HDL code into Simulink for simulation

