Michelle Thompson, WSNYV

5379 Carmel Knolls, San Diego, CA 92130 | wSnyv@arrl.net

Opulent Voice

Error correction and interleaving together can reverse some
of the damage done by noise and interference.

Opulent Voice is a modern open source amateur radio voice and
data protocol suitable for 222 MHz and above. Transmitted voice
is of excellent quality, with bitrates starting at a default of 16 kbps
and can be configured up to a maximum available bit rate of 500
kbps. Data is transmitted without having to use a separate packet
mode.

Opulent Voice uses modern digital communications techniques
including randomization through scrambling, error correction
enhancement through interleaving, and more. The transmitted
signal is divided up into frames. There is a Preamble, Frame Head-
ers, Sync Words, and Payloads. There are two types of Forward
Error Correction.

A Preamble is a pre-defined burst of signal that allows an Opu-
lent Voice transmission to be quickly recognized by a receiver. It’s
sent once, at the beginning of a transmission. Frame Headers
contain vital information about the link such as transmitter identi-
fication and authentication values. Sync Words are pre-defined
bursts of signal that help keep frame timing. They help ensure that
we are looking at the correct part of the signal at all times. For-
ward Error Correction inserts additional bits in the transmission
that make it possible to correct errors at the receiver.

At the transmitter, we do the following in order. We encode our
data with additional error correcting bits, apply interleaving,
scramble the interleaved bits to make our data appear more ran-
dom, insert a Sync Word to mark frame boundaries, and finally
modulate and transmit it over the air. Figure 1 is a drawing that
summarizes the process of creating a Payload Frame and inserting
a Sync Word at the transmitter.

Each frame in Opulent Voice is 40 ms long and was formed
using minimum frequency shift keying modulation with four
tones. Think of this as four distinct frequency tones being sent one
after another. It’s like sitting at a piano and playing four particular
notes. Each note is heard across the room by someone with per-
fect pitch, who then writes down the notes on a piece of paper.
Since there are four tones, we have four different values of infor-
mation sent per piano note. Four values translates into two bits of
information per tone. 40 ms frames of Opulent Voice sent at
18,700 FSK tones per second means we are getting 37,400 bits
per second. Minimum Frequency Shift Keying means that we
set the frequency difference between the tones to half the symbol
rate. The waveforms that represent 00, 01, 10, and 11 differ by

9350 Hz. This makes our signal spectrally efficient.

As the signal travels between transmitter and receiver, it picks
up noise and interference of many types. Some noise comes from
the circuits we're using. Some noise comes from the natural envi-
ronment. Some noise comes from other radio signals. The distance
that the signal has to travel affects the received power. All of these
deleterious effects combine. The result is that our received signal
will be noisy and damaged. What can we do at the receiver to take
advantage of all the work the transmitter did? Error correction
gives digital communications a critical advantage over analog
communications, Error correction can reverse damage done by
noise and interference. How does an Opulent Voice receiver use the
extra bits that were sent to detect and correct errors?

QEX2307-Thompsen01

Opus Frame | Opus Frame

Apply forward
error correction to
the frame header.

Apply forward error correction to
the Payload.

Golay Encoded
Frame Convolutionally Encoded Frame

|]

Interleave using quadratic permutation polynomial.

Interleaved Frame

L

Randomize with pseudorandom sequence.
Also known as scrambling.

Sync

Scrambled Frame

Figure 1 — Creating a Payload Frame and inserting a Sync Word at
the transmitter.

QEX July/August 29

There are some measurements and some calculations that we
need to make in order to use and understand etror correction. The
math is simple, but the concepts are quite powerful.

First, we need to know our Signal to Noise Ratio (SNR). SNR
is the signal power divided by the noise power. We use SNR to
measure how tough it is out there for our signal compared to the
noise. We usually see SNR expressed in dB, but in this calculation
we are going to keep SNR as a linear ratio. Second, we need to
know our bandwidth in Hz. Third, we calculate our Channel Ca-
pacity:

Capacity = Bandwidth xlog,(1+SNR) in bits per second.

What does this calculated value of Channel Capacity tell us? At
any bit rate below our Channel Capacity, we know for sure that an
error control code can be designed that can bring our error rate
down to something arbitrarily small. For any particular SNR and
bandwidth, we know for a fact we can control our error rate if we
stay below the Channel Capacity.

There’s a catch. This theorem doesn’t tell us how to design this
error control code. It just tells us that one exists. It’s up to us to
figure out how to construct a particular error correcting code.
Figuring out better error correcting codes is where a lot of energy
is spent in digital communications engineering. The results over
the past few decades have been nothing short of amazing, with a
variety of error correcting codes that operate very near the Channel
Capacity and are also relatively easy to implement.

Opulent Voice transmissions can be thought of as something
like a freight train. There’s an engine up front pulling a lot of train
cars. Each train car, or frame of data, is full of bits. We take the
information that we want to send, which might be digitally en-
coded voice, and pack these bits into the train cars. When we pack
them in for their journey, we prepare the bits in two ways. First, we
take out any unnecessary redundancy in the digitized voice. This is
called source coding. Think of this as re-packing the boxes we
want to send as freight to eliminate empty space in order to make
more efficient use of the train car. Opulent Voice uses an open
source voice coding and decoding system called Opus. With Opus,
our voice frames are dense and valuable cargo.

Once we’ve gotten rid of any extra bits that don’t help voice
quality, by using Opus, we then pack the bits into the train cars by
adding carefully chosen additional bits for error correction, by
using our channel codes. Golay Codes and Convolutional Codes
are used for channel coding.

Source coding and channel coding work together, The goal is to
first get rid of bits that aren’t strictly necessary to express our
information. We may also optimize the bits we have left, with
techniques like equalization or filtering. We then add in bits that are
going to help make our signal more resilient for the journey over
the air. These extra bits are like having extra players on the field in
a ball game, who are all working together to get the ball down the
field without it being lost to the other team. Forming an effective
team and picking the right strategy to get past the opposing players
is a very similar process to what happens in forward error correc-
tion.

The default version of Opulent Voice, with a 16 kbps version of
the Opus voice codec, operates at 18,700 symbols per second
(37,400 bits per second), and sends 1496 bits in every 40 ms frame.

Golay Code is used for the Frame Headers, and a Convolutional
Code is used for the Payload frames. The Payload frames contain
our data. If it's voice, then we are sending Opus frames. If it’s data,
then we use Consistent Overhead Byte Stuffing (COBS) to frame

30 QEX July/August 2023

arbitrary data for our Payload. Regardless of the cargo, whether
Opus or other digital data, our train cars all end up being the same
length as they roll down the track.

We are now at the receiver, waiting for an Opulent Voice trans-
mission. How do we find our signal? We are looking for the engine
pulling the train of frames.

The first frame produced by a transmitted Opulent Voice signal
is called the Preamble. It functions like the bright light on the front
of a train engine, cutting through the darkness and warning us a
train is on the way. The Opulent Voice Preamble is a series of the
highest and lowest tones from the set we're using, alternating back
and forth. This produces a very recognizable signal in the fre-
quency domain. Once we have identified and received the Pream-
ble, we discard it. Our Preamble has no error correction.

The rest of the frames are sent using combinations of all four
tones. Through coding and other techniques, the four tones create a
spectrum that looks much more random than the Preamble.

This is an important difference. The Preamble is chosen to be
very distinctive, with very little uncertainty. It has very little infor-
mation in it. These characteristics make it easy for the receiver to
find. The rest of the frames have to pack in a lot of information.
They have a much richer spectrum, and look more like a lump of
noise. We use the Preamble to find the start of the transmission,

Once we’ve identified the start of the transmission, we wait for
the end of the Preamble and start looking for the start of the first
full frame. We know we have 40 ms frames, but where do those
frames start if the rest of the transmission just looks like an undif-
ferentiated bunch of noise? The Preamble gave us some indication,
but it’s not the only thing the transmitter did to help us at the re-
ceiver. The start of every frame coming after the Preamble begins
with a distinctive Sync Word. Think of this as a smaller light or
reflective patch on the front of each train car. The transmitter con-
structed each frame to begin with a fixed pattern of 16 bits. We
know that pattern, so when we see it we know exactly where the
data frame starts, every time. When we receive a frame, we con-
firm the first 16 bits match our expected pattern. We can then set
those bits aside and examine the rest of the frame with confidence
that we know when and where we are in the transmission.

After removing the 16 bits of Sync pulse from the 1496 total
bits in the frame, we are looking at 1480 bits of data. These 1480
bits were scrambled up in a particular way to make the signal look
more random. This is an important characteristic for digital com-
munications. A random signal doesn’t have long stretches of zeros
or ones, but our structured voice and data signals certainly can have
long stretches of zeros or ones. We don’t want long stretches of
zeros or ones. More transitions in the data pattern helps our re-
ceiver synchronize to the proper bit timing. Long stretches of zeros
and ones don’t have transitions on the bit boundaries. So, we use
scrambling to change the statistics of the signal to something we
want without destroying or changing any of the underlying infor-
mation. We do this by using a pseudorandom scrambling sequence
to transform the bits in our frame so that we're sure we have lots of
bit transitions to work with.

Pseudorandom sequences have a starting point and the se-
quence repeats after some number of bits. They aren’t random, but
they have statistically similar characteristics to random numbers.
We exploit the characteristics of pseudorandom sequences to get
large benefits for a very small cost.

Specifically, in any pseudorandom sequence, 1/2 of the runs (of
zeros and ones) have length 1, 1/4 have length 2, 1/8 have length 3,
1/16 have length 4, and so on. The number of runs of zeros is equal

to the number of runs of ones. And, a pseudorandom sequence has
an equal number of zeros and ones. It might be off by cne if the
sequence has an odd number of digits.

We need to unscramble our received bits in order to get any
further. We know the exact pattern the transmitter used, so we
reverse that pattern and restore the original bit values. How did the
transmitter scramble up the data to make it look random? The
transmitter will XOR (exclusive OR operation) the entire frame
with a fixed known sequence of pseudorandom bits the same
length as the frame. Table 1 shows some of the XOR operation
done at the transmitter. Table 2 shows the XOR operation done at
the receiver.

Applying XOR operation twice, using the same pseudorandom
sequence, gives us our original data bit back. So, at the receiver, we
take a frame, XOR it with our pseudorandom sequence, and we get
back what the transmitter had before it scrambled the data. So, now
we've got unscrambled data. The next layer down is interleaved
data.

Interleaving re-orders the bits. It’s different from scrambling,
where the bits were flipped in place to make them appear more
random. Interleaving moves bits around in a particular way. We
want bits to spread out as far apart from each other as possible.
Why interleave? Well, it has to do with being clever about sudden
crashes of noise blasting our signal. A steady level of noise will
cause some amount of damage to our transmission. But, every so
often, we will get a large amount of noise that might appear for a
long enough period of time to completely wipe out a sequence of
bits. The rest of the time, the signal is in decent shape with an
occasional single-bit error, but with these larger bursts we miss out
on a chunk of data, and many bits might be missing in a row.

Why is this a problem? We can only correct so many bits at a
time. The background error rate from typical channel conditions
may be well within our ability to correct, but these sudden bursts of
noise are a problem because our error correction algorithm will
fail. Wouldn't it be a great thing to be able to distribute these burst
errors throughout the frame? Can we somehow turn the burst errors
into a slightly higher average error rate? We can and this is called
interleaving. And, this is something our Opulent Voice transmitter
did for us. That means it is something we have to un-do at the
receiver before we can get to the layer with the error correction.

Here’s an example of how interleaving works with a famous

Table 1 - Input 1 XOR with Input 2 =
Result for transmission

Input 1: [Input 2: Result:
Data bit |Pseudorandom |(Transmitted
it bit
0 0 0
1
[0]
1 (0]
Table 2 — Receiving bits
Input 1: Input 2: Result:
Received |Pseudorandom |Data
| bit bit bit
[0} 0 0
1 1 0
1 0 1
(6] 1 1

poem called Ozymandias by Percy Bysshe Shelley. Here's the data
we sent:

“My name is Ozymandias, king of kings:
Look on my works, ye Mighty, and despair!”

Nothing beside remains. Round the decay
Of that colossal wreck, boundless and bare
The lone and level sands stretch far away.”

Here’s our transmission with a significant burst error marked
with X,

“My name is Ozymandias, king of kings:
XXXXXXXXXXXXXye Mighty, and despair!”

Nothing beside remains. Round the decay
Of that colossal wreck, boundless and bare
The lone and level sands stretch far away.

Well, we aren’t going to be able to tell what was under those
errors. What if we interleave the poem before sending it? We know
we're going to get this type of burst damage, so we mix up the
letters in a predictable way and then send it over the air.

soyba hh y a bk oii a h skn 1.1 bpu* sia nhynri
nn wcia y,tc, rsegnrynyf”’e aeso d,rioamodoe
Ms,gameaan .fwMs ah oeskvtacnNdokL
or:hndsdkcmieaOa nsl odadusl yetef el Tnlelmtn
dtogatir rRiseewet dnd gesOzes

We get a burst error. Errors are marked with X.

soyba hh y a bk oii a h skn 1.1 bpu* sia nhynri

nn wcia y,tc, rsegnrynyf’e aeso d,rioamodoe
XXXXXXXXXXXXXwMSs ah oeskvtacnNdokL
or:hndsdkcmieaOa nsl odadusl yetef el Tnlelmtn
dtogatir rRiseewet dnd gesOzes

We deinterleave the poem at the receiver.

“My name iX OzymandiasX king of kings:
Look on my works, ye Xighty, and despair!”

NothinX beside reXains. Round the dXcay
Of thXt colossal wreck, boundlessXand bare
The lone aXd level sXnds stretch XXr awayX

When we receive the poem, we can see it has some missing
letters. But, we now have a much higher probability of being able
to sort out all the damage because the errors are distributed
throughout the poem instead of all in a row. We can recover most if
not all of the damaged words if the words are missing a letter or
maybe two. We can’t recover an entire missing phrase, which is
what would have happened if the original poem was sent over the
air with all the letters in order.

This is how interleaving and error correcting codes work to-
gether. The error correcting codes are like your brain, fixing the

QEX July/August 31

words you read that have occasional errors. The interleaving makes
sure that those errors are scattered around rather than concentrated
in one place. Interleaving is a common technique in digital signal
processing and is required to get all of the functionality out of
certain types of error correcting codes. Since we are using one of
those types of codes, a convolutional code, we need to interleave.

We do have to know exactly where each original bit came from.
For Opulent Voice, we have a formula that told us how to inter-
leave, and this same formula will tell us how to get everyone back
in line in the correct position. Without knowing this, nothing else
will work. Once we re-order things, then we have all the bits in the
right sequential order and can use our error correcting code.

There are several ways to interleave, but Opulent Voice uses a
quadratic permutation polynomial interleaver. It is defined by a
simple equation. x is the original position of the bit. y is the inter-
leaved position:

177x+130x* = y

We are interleaving 1480 bits of data, so if the result is larger
than 1480 or a multiple of 1480, we take the remainder. In other
words, the equation is done with modulo 1480.

Let’s look at the first few results in Table 3. The bit at position
0 stays where it is. The bit at position 1 is moved to position 547.
The bit at position 2 is moved to position 354. The bit at position 3
is moved to position 901. The bit at position 4 is moved to position
708. The bit at position 5 is moved to position 12535.

Let’s say we get a burst of noise that wiped out 6 bits in a row
of interleaved data. At the receiver, we reversed the interleaving.
Those 6 bits in a row of damaged interleaved data are all sent back
to their original positions. They are, by mathematical design, as far
away from each other as is possible. The quadratic permutation
polynomial is selected specifically for how far apart it scatters
contiguous bits.

Now we’ve got deinterleaved data. Our frame starts to show
some structure. There are two sub-frames. The first is the Frame
Header, and the second and larger of these two sub-frames is our
Payload data. In most cases, the Payload will be Opus voice.

The Frame Header is stuck on to the front of each Payload. The
information in the Header allows a listener to join a transmission in
progress. For a narrowband signal, this can be a lot of overhead.
There are techniques to mitigate the overhead, like splitting up the
information in the Frame Header and distributing it round-robin
style. For higher bit rate modes like Opulent Voice, the relatively
small number of bits in the Header are not a burden, so they are
sent every time in full.

How do we decode these frames? Well, we read the Opulent
Voice specification document and we know we have to deal with 8
sections of 24 encoded bits for 192 bits total. We used a 12 to 24
bit Golay Encoder at the transmitter. We took our twelve 8-bit
bytes of Frame Header data, organized it into eight 12-bit groups
of bits, and multiplied each of these 12-bit sections by the Golay
Code generator matrix. Each of these multiplications resulted in 12
parity bits. For each 12-bit portion of the
original data, we attach the corresponding
12-bit parity result to it, and this creates

Table 3 — Interleaving

When we receive this 24 bit codeword, we unscramble and
deinterleave. Then, we correct errors by multiplying the received
codeword with another special matrix. This one is called the parity
check matrix. It’s the partner of the generator matrix that created
the parity bits at the transmitter. The result from this multiplication
is called the syndrome. If the syndromie is zero, then there were no
errors in the codeword. We drop the parity bits and what is left is
the original data. If the syndrome has ones in it, then we take that
result and go to a lookup table that we’ve made based on the proto-
col specification. This table maps the result of the multiplication to
a list of which bit positions in the codeword have errors. Whatever
bits have errors, we flip them. Now we have a corrected codeword.
We drop the parity bits and what is left is corrected original data.
This process is called syndrome decoding.

We can correct damage wherever it occurs across the 24-bit
codeword, within reason. The limit for this particular type of code
is that it can correct 3 errors. It can detect up to 7. If we have a
situation where we’ve detected 1, 2, or 3 errors, then we can cor-
rect them on our own based solely on the results of our “secret
decoder ring” matrix math we use at the receiver. If we have 4, 5,
6, or 7 errors, we know we have them, but we cannot correct them
on our own. 8 or more errors and some interesting things might
happen. We will be pulled off course so far that our codeword
resolves to something completely different than what was sent. The
resulting data stream will be very damaged. There’s not much we
can do about this, but the level of noise or interference that would
cause half or more of lost bits in a codeword are extremely high.

Now that we have these very helpful bits of information about
our link decoded, we can turn our attention to the payload itself,
which contains Opus voice frames. The payload is convolutionally
encoded data. We know that the deinterleaved bits were convolu-
tionally encoded at rate one-half.

When we talk about the rate of a code, we are talking about a
ratio between how many bits go into an encoder (the number on
the top) and how many bits come out of an encoder (the number on
the bottom). A rate 1/2 means that one bit of our original informa-
tion was turned into two bits sent over the air. For a rate 1/2 en-
coder, every bit of source data is converted into two parity bits.
Notice that the Golay Code is also a rate 1/2 code. 12 bits went in
and 24 came out. Not all error correction codes are rate 1/2. There
are a variety. Rates won’t be less than zero or greater than one.

With a convolutional code, what we send over the air is the
parity bits. No original data is sent. At the receiver, we figure out
what the original data was by analyzing the stream of coded parity
bits. Each sequence of coded parity bits stands for a unique origi-
nal data stream. We infer the original data from the path the parity
bits trace through a particular graph.

For a convolutional encoder, it’s all about this path through a
graph. The graph is called a trellis diagram, and it’s used for both
encoding and decoding.

How can we think of this? Is there something in everyday life
that might be similar? Yes, there is. Figure 2 shows a peg game.
We drop a disc or ball in at the top, and it
hits pegs on the way down. At each peg, it
goes either left or right. We can think of

eight 24-bit codewords. These eight 24-bit

codewords are what we then interleaved,
scrambled, and then sent out over the air.

Codes that send the original data plus

some parity bits are called systematic

01 5| (N = O X

codes.

y this as going in either the 0 or 1 direction.
0 At the bottom, we get a score or payout
g gz depending on where it fell. Each path that
901 our game token took from top to bottom is
708 unique. When we play the game over and
1255 over, we can see the patterns that we take

32 QEX July/August 2023

Figure 2 — A peg game.

falling through the pegs. When we do this over and over, and
record them, the paths make something that looks a lot like a trellis
(Figure 3). We can think of gravity the way we think of time.
Gravity pulls our token down to the ground through the field of
pegs. Time pulls our received parity bits through the states of a
trellis diagram (Figure 4).

An enduring truth of engineering is that you don’t get some-
thing for nothing. If you want to magically correct errors, lessen
the impact of large bursts of errors by distributing them over time,
and then deliver clean and clear results at the receiver as if nothing
had happened, then there is a price to be paid. That price is com-
plexity.

‘When we use convolutional error correction, which does the
function that our brain does in correcting the missing letters in the
poem Ozymandias, then there are things that we have to give up.
We are giving up simplicity and flexibility for the ability to repair
the data that we received. The benefit that we are getting is that we
can repair this data on our own, without requiring it to be re-sent.
At least, up to a point. There are limits to how many bits per re-
ceived codeword we can correct, but with error correction, we can
clean up badly damaged signals. An equivalent signal sent without
error correction would be useless.

A convolutional encoder is matched to its convolutional de-
coder. The signal we’ve created in Opulent Voice can only be
undone by the matching Opulent Voice decoder at the receiver.
Going back to the comparison to a peg game, our receiver recreates
the path the ball took at the transmitter in the peg game. We can do

\
n |’ i

Figure 3 — Paths make something that looks a lot like a trellis.

this because the receiver knows what particular transmitted values
each peg “stood for” as that peg was hit on the way down. The
original information sequence that we sent was defined as “which
direction do we choose go at each peg.” The path labels between
pegs represents the unique parity code. These parity codes are what
was sent over the air. Those two bits sent over the air represent the
one bit that got us to that path. So, it is the path itself through the
field of pegs that stands for a particular sequence of data. The way
that we construct this path allows us to lose some bits here and
there over the air and still be able to see the most likely path. The
path is like a sentence in English. If we lose a letter here and there,
we can fill it in. There’s only so many missing letters that make
sense. We can only paper over so many missing segments of the
path through the trellis.

Another metaphor for this process is if we mapped the paths a
robotic vacuum cleaner takes while cleaning a room. Let’s say we
record the paths with time-lapse photography. Even if the robot
goes under a coffee table, and we lose part of the path, we can
successfully guess which path it took by looking at the trails it
made and extrapolating which paths connect together under the
table.

The Opulent Voice specification tells us exactly what we need to
know to do convolutional decoding in a compact and standard way.
We express the particular encoder we are using in the form of a
polynomial. A diagram for the trellis defined by the polynomial in
the specification can be found at https://www.openresearch.
institute/wp-content/uploads/2022/09/opv-trellis-diagram-
segment.png.

Here is how we encoded the data, with reference to the image at
the URL. We start at dark blue node 0 and we take a bit of our
input data, We take the green path if the input data was a 1, or ared
path if the data input was a 0. Each node has two pairs of numbers
separated by a slash. These tell us what parity bits we transmit. We
write down the stream of parity bits we create by moving through
the trellis with our input data guiding the way. Look at node 15.

QEX July/August 33

Viterbi Decoder Trellis : Rate 1/2 : nkm =2,1,3 :

r = 11 11 01 00 01

Statea

constraint = 3: g(t)=1,1,1: gfb)=1,1,0: Dfrecc =4
00

10

000000 ooad

house of mirrors at a carnival. Everyone
enters the house of mirrors the same way,
through a single entry point. As you go
forward, you explore the potential paths.
Paths that don’t work out are paths that you

(00)
it o 0 remember as “bad.” You do eventually
) 1 ” e reach the end. Your knowledge of the
o o .
State b \ directions you took through that house of
(01) ° , ° mirrors can be thought of as the original
7 o \ 01] o1 data stream. To decode the next batch of
/| received bits, you enter another house of
11 11 11) e
A) mirrors with different glass walls and
State ¢ e . - o
(10) ° o ° ° ° ° ° different mirror locations. The original data
A, stream sets the glass and mirrors in a par-
o1/ N© o1 ticular pattern. As long as there are not too
—_— Inputl g
—> Inguto o many errors, then you will have a path
Stated discandes 10 10 . ;
;;) 5> Wobockpeth ° e ° B ° ° ° o through the house of mirrors. You will get
the original data back. If you have too
Perfectbit stream "r" is decoded with it vi10 so thatthe discovered message in "m* " matches the original. many errors in your received p'dl’ily stream,
T* = 11 1 01 00 01 10 00 then you may be completely cut off from
a* = 1 0 1 1 o + 0 0 the exit. There’s no obvious path forward
s 1 A 1 - Fp T e o and you can’t recreate the data stream.

Figure 4 — Time pulls our received parity bits through the states of a trellis diagram.

The top pair of numbers is 0/3. This tells us that if we are at this
node, and the input data was 0, we emit 11 (3 in binary). We then
take the red path to 15 and select the next data bit. Let’s say that
data bitis 1. We emit 00 (0 in binary) and then take the green path,
which moves us to node 7.

To receive, we use the same trellis diagram. We feel our way
forward through the graph, comparing the received set of parity
bits to the ones that the path said we’d see. If they match closely,
then we’d be wise to pick that path. In the end, the path that most
closely matches what we have to work with is picked as the win-
ner. We use this path to define what we think was the most likely
original data sequence.

Figures 4, 5, and 6 at the following URL: https:/en.wiki
books.org/wiki/A_Basic_Convolutional_Coding_Example are
examples of decoding by hand using a trellis diagram for a four-
state system. Each vertical line of circles is a step in time. The
green arrows are where we explore forward, comparing the re-
ceived parity bits to what was generated by that path when the
trellis diagram was used to encode. For each path forward, we
mark down how many errors we’ve accumulated along the way.
When we reach a stopping point, we then turn around and look at
all the paths we explored, and pick the one that had the best met-
rics, Usually, this is the path with the lowest number of bit errors.

When we decode we must periodically stop and look back at

our path and make a call on what the sequence was up to that point.

The choice of how far to go, before looking back and making a
decision about a sequence of data, is an important one. The longer
we go, the more time it takes to process that section of the bit
stream. Too short, and we might end up with not enough space
around the coffee table to clearly see which Roomba path was the
right one. The determination of how long to let each batch of
convolutional decoding run is an important design decision for
these types of codes.

This process of convolutional decoding is like going through a

34 QEX July/August 2023

Digital forward error correction, and
digital signals in general, make for a differ-
ent radio experience from analog commu-
nications. In analog, a relatively simple
receiver circuit can recover an audio signal
from a wide variety of analog transmitters. In order to be able to
receive digital signals that have been damaged by noise, our trans-
mitter and receiver are much less flexible. If we have the wrong
decoder, then we may get nothing at all from the headphones. A
different set of polynomial representations for a convolutional
encoder is like having a completely different house of mirrors to
work through.

‘We now have the Frame Header and the two Opus frames that
we put into the data Payload. The next step is to decode these two
Opus frames and recover the voice signals. We use the decoding
functions in the Opus protocol standard, and we get audio wave-
forms.

That is the story of forward error correction in the Opulent
Voice receiver. The system uses two types of forward error correc-
tion, a convolutional encoder and a Golay code, to protect our data
from noise and interference it encounters over the air. This is a
solid protocol done in a common-sense manner that uses modern
error correction to achieve very high quality 222 MHz and above
voice and data communications. Source code for a C++ implemen-
tation of Opulent Voice modulator and demedulator can be found
at https://github.com/phasedground/opv-cxx-demod.

If you would like to see more projects like Opulent Voice
suceceed in the amateur radio community, please join https://fopen-
research.institute at the “Getting Started” menu option. There is
no cost. You do not have to be an expert to join, you just have to be
willing to become more of one along the way. Everything ORI does
is open source and education is a central part of the mission.

Michelle D. Thompson, W5NYV, enjoys thinking and doing

— not necessarily in that order! Book learning includes BSEET,
BSCET, math minor, MSEE Information Theory. Actual doing
includes engineering at Qualcomm, engineering at Optimized
Tomfoolery, Amateur Extra-class license, AMSAT Phase 4
Ground Lead, DEFCON, IEEE, Burning Man, and community
symphony.

	Binder2.pdf
	JulyAugustQEXOpulentVoiceMichelleThompson

	Binder1.pdf
	JulyAugutsQEXOpulentVoiceMichelleThompson_last

